ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

> Ч/*н - 7*3 Р1 - 6993

2029/2-73 Г.Г.Безногих, А.Буяк, Н.К.Жидков, В.Й.Заячки, Л.С.Золин, Л.Ф.Кириллова, В.А.Никитин, В.А.Свиридов, Чыонг Бьен, М.Г.Шафранова

C346.2r

5-399

ПАРАМЕТР НАКЛОНА И ДЕЙСТВИТЕЛЬНАЯ ЧАСТЪ АМПЛИТУДЫ УПРУГОГО **р-п** -РАССЕЯНИЯ В ИНТЕРВАЛЕ ЭНЕРГИЙ 10-70 ГЭВ

ЛАБОРАТОРИЯ ВЫСОНИХ ЭНЕРГИЙ

P1 - 6993

Г.Г.Безногих, А.Буяк, Н.К.Жидков, В.Й.Заячки, Л.С.Золин, Л.Ф.Кириллова, В.А.Никитин, В.А.Свиридов, Чыонг Бьен, М.Г.Шафранова

ПАРАМЕТР НАКЛОНА

И ДЕЙСТВИТЕЛЬНАЯ ЧАСТЬ АМПЛИТУДЫ УПРУГОГО **р-п** -РАССЕЯНИЯ В ИНТЕРВАЛЕ ЭНЕРГИЙ 10-70 ГЭВ

Направлено в ЯФ

Введение

Экспериментальные данные о p-n -рассеянии при высоких зиергиях дают информацию для оценки ряда моделей теории сильных взаимодействий. Большой интерес представляет сравнение величины отношения действительной части амплитуды упругого p-n рассеяния к мнимой ее части при t=0 a_{pn} с величинами, предсказанными дисперсионными соотношениями. Сопоставление параметров амплитуд p-n и n-p рассеяния может служить для проверки применимости модели Глаубера и степени ее точности.

Для определения характеристик амплитуды упругого p-n рассеяния использовались дифференциальные сечения упругого p-d рассеяния $^{1,2/}$ и параметры амплитуды упругого p-p рассеяния $^{3,4/}$, измеренные на ускорителе в Серпухове в интервале энергий 10-70 Гэв. Были взяты данные в интервале 0,002 $\leq |t| \leq 0,05 / \Gamma \operatorname{sb/c/2}^2$. Для анализа использовалась модель Глаубера $^{5/}$. В рамках этой модели при малых величинах четырехмерного переданного импульса дифференциальное сечение упругого p-d рассеяния может быть выражено через амплитуды упругого p-p и p-n -рассеяния на свободных нуклонах $f_{pp}(t)$ и $f_{pn}(t)$:

$$\frac{d\sigma}{dt} = \frac{|S(\frac{t}{4})[f_{c}(t) + exp(i\chi_{cp})f_{pp}(t) + exp(i\chi_{cn})f_{pn}(t)] + \frac{ih}{dt} + \frac{ih}{dt} = exp(i\chi_{cn})f_{pn}(\frac{t}{4})f_{pn}(\frac{t}{4})IG|^{2}.$$

Для амплитуд рассеяния на свободных нуклонах была использована следующая параметризация:

$$f(t) = \frac{\sigma}{4\sqrt{\pi} h} (i+a) \exp(\frac{bt}{2}),$$

где σ - полные сечения взаимодействия, их значения брались

3

из работы ⁶; b - параметр наклона; $f_c = \frac{2n\hbar\sqrt{\pi}}{|t|} F(t)e^{-i\eta}$

- амплитуда кулоновского рассеяния, где $F_p(t)$ - электромагнитный формфактор протона;

$$\eta = 2n \ln \frac{1.06 \hbar}{a \sqrt{|t|}}$$

 $n = 1/137 \beta_{\text{лаб.}} / \beta_{\text{лаб.}}$ - скорость налетающей частицы в лабораторной системе в единицах с/; а - величина порядка радиуса нуклон-нуклонного взаимодействия /1 ф /.

$$S^{2}(\frac{t}{4}) = S_{0}^{2}(\frac{t}{4}) + S_{2}^{2}(\frac{t}{4})$$

 $S_0(t)$ и $S_2(t)$ - формфакторы дейтона в S и D состояннях. Значения $S^2(\frac{t}{4})$ взяты из работы $\frac{7}{7}$.

Величицы $\chi_i(i = cp, cn, cpn)$ представляют собой средние значения сдвигов кулоновских фаз по отношению к ядерному рассеянию $/\chi_{cp}$, χ_{cn} и χ_{cpn} - соответственно сдвиги фаз по отношению к p-p, p-n и двойному ядерному рассеянню/. В /8/ было показано, что $\chi_{cp} = \chi_{cn} = \chi_{cpn} = 0,06$ н что можно практически пренебречь завнсимостью этих величин от энергии. IG - интеграл Глаубера. Он был взят равным О,О28мбн-1 /7/. Имея дифференциальные сечения упругого p-d рассеяния, параметры амплитуды упругого p-p рассеяния и формфактор дейтона, по формуле /1/ мы вычислили параметры амплитуды упругого p-n рассеяния, которые приводятся ниже.

I. Параметр наклона упругого p-п рассеяния

Полученные значения b_{pn} приведены на рис. 1 и в таблице, в которой они даны со статистическими ошибками. Систематическая ошибка в величине b_{pn} , в первую очередь, связана с предположением, заложенным в основу расчета формфактора дейтона, а именно тем, что параметр наклона b_{pp} совпадает с параметром наклона нейтрон-протонного рассеяния b_{np} прн энергиях 10-26 Гэв. Это предположение было сделано на основе анализа экспериментальных данных по упругому p-p н n-p рассеянию (9-14).

На рис. 1 видно, что параметр наклона упругого *p-n*-рассеяния растет с энергией. Важио отметнть, что расчет величины *b*_{pn} при использовании теоретических значений формфактора

Для сравнения приведены аналогичные величины для p-p рассеяния, измеренные при близких значениях импульса.

Р _{ла}	б вра /с (Гэв/с) ⁻²	6 _{р/2} (Гав/с)-2	dpn	/3,11/ مم
	0,002=/t/±0,05 (Гэв/с) ²	0,008±jtj±((Гав/с) ²) ,1 2	
II,	2 9,95+0,72		-0,21 <u>+</u> 0,07	-0,290+0,013
I5,9	9 9,58 <u>+</u> 0,56	10,31 <u>+</u> 0,15	-0,38 <u>+</u> 0,06	
20,	5 9,42 <u>+</u> 0,44	10,24 <u>+</u> 0,11	-0,35 <u>+</u> 0,06	-0,258+0,020
26,	5 10,22 <u>+</u> 0;58	10,52 <u>+</u> 0,12	-0,35+0,06	-0,154+0,025
34,1	B 10,77 <u>+</u> 0,58	10,69+0,12	-0,25 <u>+</u> 0,06	-0,171 <u>+</u> 0,029
48,	9 10,51 <u>+</u> 0,70	10,84 <u>+</u> 0,11	-0,14+0,07	-0,159 <u>+</u> 0,030
57,2	2 II,72 <u>+</u> 0,66	II,II <u>+</u> 0,I0	-0,20+0,06	-0,154 <u>+</u> 0,022
64,	B 13,49 <u>+</u> 0,82	II,50 <u>+</u> 0,II	+0,13+0,08	
70,	2 '12,05 <u>+</u> 0,61	II,48 <u>+</u> 0,15	-0,14+0,08	-0,092 <u>+</u> 0,0II

Примечание: систематические ошибки составляют: $\Delta b_{p_3} = \pm 0.3 (\Gamma_{3B}/c)^{-2} /4/$ $\Delta b_{on} = \pm 0.8 (\Gamma_{3B}/c)^{-2} (данная работа)$

$$\Delta d_{pp} = \pm 0.028 / 3/$$

 $\Delta d_{pp} = \pm 0.02 / 11/$
 $\Delta d_{p} = \pm 0.13 (данная работа)$

Рис. 1. Параметр наклона упругого *p-n* рассеяния в интервале энергий 10-70 Гэв. Для сравнения нанесена прямая, описывающая энергетическую зависимость параметра наклона упругого *p-p* рассеяния /4/.

дейтона дает аналогичную зависимость b_{pn} от энергии. Для сравнения на том же рисунке нанесена прямая, соответствующая найденной $B^{/4/}$ зависимости параметра наклона упругого p-p рассеяння в том же энергетическом интервале. В случае p-p рассеяния /0,008 $\leq |t| \leq 0,12 (\Gamma_{3B}/c)^2$ / было найдено, что энергетическая зависимость параметра наклона аппроксимнруется формулой

$$p_{p}(S) = b_0 + 2b_1 \ln (S/S_0),$$
 /2/

где значения параметров b_0 н b_1 равны: $b_0 = 7,32\pm0,25/\Gamma$ эв/с/², $b_1 = 0,41\pm0,06$ /Гэв/с/⁻².В рамках моделей с полюсами Редже основной вклад в величину b_1 дает наклон траектории Померанчука. Видно, что полученные значения b_{pn} удовлетворительно ложатся на эту прямую / χ^2 / 1точку - 2/. Энергетическая зависимость параметра наклона упругого p-n рассеяния так же, как и энергетическая зависимость параметра наклона

упругого *p*-*p* рассеяния, говорит о сужении конуса с ростом энергии. В рамках теории комплексных моментов этот факт свидетельствует об отличном от нуля наклоне траектории Померанчука.

II. Величина отношения действительной части амплитуды p-п рассеяния к мнимой при t=0

Энергетическая зависимость вещественной части амплитуды p-n рассеяния, полученная по формуле /1/, приведена на рис. 2.3начения $a = \frac{Ref_{pn}(0)}{Im f_{pn}(0)}$ вместе с данными о параметре

наклона b_{pn} приведены также в таблице. Указаны статистические ошибки. Систематические ошибки в дифференциальном сечении упругого p-d рассеяния, являющиеся одним из основных источников систематических ошибок, подробно обсуждаются в/1/. На рис. 2 приведены также данные из работ /15, 16/ и результаты расчета на основе дисперсионных соотношений, выполненных в работах / 17,18/. Видно, что действительная

часть амплитуды упругого р-п рассеяния отрицательна и па-

6

- 7

дает по абсолютной величине с ростом энергии в согласии с результатами расчетов по дисперсионным соотношениям. Таким образом, данные по p-n рассеянию так же, как и данные по p-p рассеянию ^{/3/}, не обнаруживают отклонений от дисперсионных кривых. Для проверки влияния величин χ_{cp} , χ_{cn} , χ_{cpn} на результат был рассчитан вариант, в котором все эти величины были приравнены нулю. Оказалось, что при этом значение b_{pn} увеличивается на ~0,6-0,7 /Гэв/с/⁻², а a_{pn} увеличивается по абсолютной величине на ~0,05.

Из таблицы видно, что в рассматриваемом энергетическом диапазоне параметры амплитуды упругого p-p рассеяния $/a_{pp}$ и b_{pp} / близки к соответствующим параметрам амплитуды упругого p-n рассеяния $/a_{pn}$ и b_{pn} / вблизи t=0. Эти данные позволяют заключить, что амплитуды рассеяния в изотопических состояниях T=1 и T=0 при высоких энергиях и малых t близки между собой. Аналогичные выводы были сделаны в работе /6/ на основе измерения полных сечений p-pи p-n взаимодействий.

Авторы выражают благодарность Т.Ф.Грабовской, А.П.Ларичевой и Л.Ундрах за техническое оформление работы.

Литература

В.Д.Бартенев, Г.Г.Безногих, А.Буяк, Н.К.Жидков, В.Й.Заячки, Л.С. Золин, Л.Ф.Кириллова, Б.А.Морозов, В.А.Никитин, П.В.Номоконов, Ю.К.Пилипенко, А.Сандач, В.А.Свиридов, Чыонг Бьен, М.Г.Шафранова. Препринт ОИЯИ, P1-6244, Дубна, 1971; ЯФ, 15, 1174 /1972/.

- G.G.Beznogikh, A.Bujak, L.F.Kirillova, B.A.Morozov, V.A.Nikitin, P.V.Nomokonov, A.Sandacz, M.G.Shafranova, V.A.Sviridov, Truong Bien, V.I.Zayachki, N.K.Zhidkov, L.S.Zolin, JINR, EI-6615, Dubna, 1972.
- 3. G.G.Beznogikh, A.Bujak, L.F.Kirillova, B.A.Morozov, V.A.Nikitin, P.V.Nomokonov,
- A.Sandacz, M.G.Shafranova, V.A.Sviridov, Truong Bien, V.I.Zayachki, N.K.Zhidkov, L.S.Zolin. Phys.Lett., 39B, 411 (1972).
- G.G.Beznogikh, A.Bujak, L.F.Kirillova, B.A.Morozov, V.A.Nikitin, P.V.Nomokonov, A.Sandacz, M.G.Shafranova, V.A.Sviridov, Truong Bien, V.I.Zayachki, N.K.Zhidkov, L.S.Zolin. JINR, El-6613, Dubna, 1972; El-6743, Dubna, 1972.
- 5. V.Franco and R.Glauber. Phys.Rev., 142, 1195 (1966).
- 6. Ю.П.Горин, С.П.Денисов, С.В.Донсков, А.И.Петрухин, Ю.Д.Прокошкин, Д.А.Стоянова, Дж.В.Аллаби, Дж.Джакомелли. ЯФ 14, 998 /1971/.
- 7. Л.С.Золин, В.А.Никитин, Чыонг Бьен, М.Г.Шафранова. Препринт ОИЯИ, Р1-6616, Дубна, 1972.
- 8. V.Franco and E.Coleman. Phys.Rev.Lett., 17, 827 (1966).

8

9. J.Engler, K.Horn, J.König, F.Mönnig, P.Schludecker, H.Schopper, P.Sievers, H.Ullrich and K.Runge. Phys.Lett., 29B, 321 (1969).

- 10. B.G.Gibbard, L.W.Jones, M.J.Longo, J.R.O'Fallon, J.Cox, M.L.Perl, W.T.Toner, M.N.Kreisler, P.R.L., 24, 22 (1970).
 - II. K.J.Foley, R.S.Jones, S.J.Lindenbaum, W.A.Love, S.Osaki, E.D.Platner, C.A.Quarles, and E.H.Willen. Phys.Rev.Lett., 19, 857 (1967); Phys.Rev.Lett., 11, 425 (1963); Phys. Rev.Lett., 15, 45 (1965).
- 12. A.B.Wicklund, I.Ambats, D.S.Ayres, R.Diebold, A.F.Greene, S.L.Kramer, A.Lesnik, D.R.Rust, C.E.W.Ward, D.D.Yavanovitch. 16th International Conference on High Energy Physics, Batavia, Ill., 6 - 13 Sept. (1972) paper 355.
- 13. R.M.Edelstein, R.A.Carrigan, Jr. N.C.Hien, T.J.McMahon, I.Nadelhaft, E.W.Anderson, E.J.Bleser, G.B.Collins, T.Fujii, J.Menes and F.Turkot. Phys.Rev., D5, 1073 (1972).
- 14. D.Harting, P.Blackall, B.Elsner, A.C.Helmholz, W.C.Middelkoop, B.Powell, B.Zacharov, P.Zanella, P.Dalpiaz, M.N.Focacci, S.Focardi, G.Giacomelli, L.Monary, J.A.Beaney, R.A.Donald, P.Mason, L.W.Jones, D.O.Caldwell. Nuovo Cim., 38, 60 (1965).
- 15. Н.Далхажав, П.Девински, В.Й.Заячки, З.Златанов, Л.С.Золин, Л.Ф.Кириллова, З.Корбел, П.Марков, Нго Куанг Зуй, Нгуен Дин Ты, В.А.Никитин, Л.Роб, В.А.Свиридов, Д.Тувдендорж, Л.Христов, Х.Чернев, Чыонг Бьен, М.Г.Шафранова. ЯФ, 8, вып. 2, 342 /1968/.
- 16. В.Й.Заячки, Л.Г.Христов, З.М.Златанов, П.А.Девински, Препринт ОИЯИ, Р1-6044, Дубна, 1971; Р1-4894, Дубна, 1970.
- 17. A.A.Carter and D.V.Bugg. Phys.Lett., 20, 203 (1966).
- 18. В.С.Барашенков, В.Д.Тонеев. Препринт ОИЯИ, Р2-3850, Дубна, 1968.

Рукопись поступила в издательский отдел 13 марта 1973 года.