ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

ЭКЗ. ЧИТ. 3A.

P1

6934

6934

П

С.Ф. Бережнев, А.В. Демьянов, А.В. Куликов, А.В. Купцов, В.П. Курочкин, Г.Г. Мкртчян, Л.Л. Неменов, Ж.П. Пустыльник, Г.И. Смирнов, А.Г. Федунов, Д.М. Хазинс

ИЗМЕРЕНИЕ ПИОННОГО И НУКЛОННОГО ФОРМФАКТОРОВ ПРИ ЗНАЧЕНИЯХ ВРЕМЕНИПОДОБНОГО ПЕРЕДАВАЕМОГО

ЧЕТЫРЕХИМПУЛЬСА $k^2 = 1,7 f^{-2}$, 2,2 f⁻² и 2,9 f⁻²

ΛΑБΟΡΑΤΟΡИЯ ЯДЕРНЫХ ΠΡΟБΛΕΜ

P1 - 6934

С.Ф. Бережнев, А.В. Демьянов, А.В. Куликов, А.В. Купцов, В.П. Курочкин, Г.Г. Мкртчян, Л.Л. Неменов, Ж.П.Пустыльник, Г.И. Смирнов, А.Г. Федунов, Д.М. Хазинс ИЗМЕРЕНИЕ ПИОННОГО И НУКЛОННОГО ФОРМФАКТОРОВ ПРИ ЗНАЧЕНИЯХ ВРЕМЕНИПОДОБНОГО ПЕРЕДАВАЕМОГО ЧЕТЫРЕХИМПУЛЬСА $k^2 = 1.7 f^{-2}$, 2.2 f^{-2} И 2.9 f^{-2}

Направлено в ЯФ

¹ НИИЯФ МГУ
 ² Ереванский физический институт

Summary

The first experimental estimates of the nucleon formfactor $F_1^{\mathbf{v}}(\mathbf{k}^2)$ in the time-like region were reported in paper². These estimates as well as the estimates of the pion electromagnetic formfactor $F_{\pi}(\mathbf{k}^2)$ were obtained at the four-momentum transfer $\mathbf{k}^2 = 2 \ \mathbf{f}^{-2}$ from the analysis of the data on the $\pi \ \mathbf{p} \rightarrow \mathbf{e}^+ \mathbf{e}^- \mathbf{n}$ reaction in the Δ (1236) resonance region. This paper represents an analysis of new data on the $\pi \ \mathbf{p} \rightarrow \mathbf{e}^+ \mathbf{e}^- \mathbf{n}$ process obtained by authors^{1/1}.

It is shown that theoretical description of the process in question in this particular region ($w = \sqrt{s} = 1296$ MeV) is much more simpler than that of photo- and electroproduction processes.

Both the pion electromagnetic formfactor $F_{\pi}(k^2)$ and the isovector Dirac-nucleon formfactor $F_1^{\mathbf{v}}(k^2)$ were assumed to be real in this region of small four-momentum transfers: $k^2 = 1.7 \text{ f}^{-2}$, 2.2 f^{-2} and 2.9 f^{-2} .

It is shown that the model fits all experimental distributions well in assumption of equality $F_{\rm TI}(k^2) = F_1^{\rm v}(k^2)$. In this assumption the values of formfactors at the mentioned above fourmomentum transfers are $F_{\rm TI}(k^2) = F_1^{\rm v}(k^2) = 1.10 \pm 0.07$, 1.14 ± 0.06 , 1.30 ± 0.07 . The value of electromagnetic radius in this-case is $r_{\rm TI} = r_{\rm F1} = (0.75 \pm 0.14)$ f and is consistent with the value determind in the $\epsilon_{\rm N}$ elastic scattering $r_{\rm F1} = 0.52$ f.

The parameters $F_{\pi}(k^2)$ and $F_1^{\nu}(k^2)$ being assumed independent, the determination of formfactors is possible only at $k^2 = 2.9 \text{ f}^{-2}$:

 $F_{\pi}(k^2) = 1.2 + 0.2 - 0.3$, $F_1^{v}(k^2) = 1.4 + 0.1 - 0.2$.

interesting and a second s Second s Исследование реакции обратного электророждения пионов (09П)

 $\pi^{-} + p \longrightarrow e^{+} + e^{-} + n \qquad (I)$

представляет интерес по двум причинам. Во-первых, из денных по этому процессу можно, не прибегая к моделям, определить дифференциальные сечения реакции обратного фоторождения:

 $\pi^- + \rho \longrightarrow \gamma^+ + n$, (2) где $\gamma^+ -$ виртуальный фотон с времениподобным 4-х импульсом k($k^2 > 0$). Во-вторых, измерение дифференциальных сечений ре-

акции (I) поэволяет изучить электромагнитную структуру пиона и нуклона в области времениподобных переданных импульсов/I-3/.

Для исследования электромагнитной структуры адронов изучение реакции (I) при промежуточных энергиях пионов IOO + 360 Мав (I,3 $f^{-2} < k_{max}^2 < 4,4 f^{-2}$) имеет следующие преимущества:

а) для этого интервала энергий возможно применение теоремы Ватсона-Ферми/19/, позволяющее осуществить последовательное теоретическое описание ОЭП с помощью дисперсионных соотношений для мультипольных амплитуд; за технологии и соотношений соотношений для

б) при этих энергиях не возбуждается резонанс (1518).
 Поэтому в квазипороговой области дифференциальные сечения ОЭП
 определяются в основном борновскими членами /6/;

в) при выполнении мультипольного анализа можно рассматривать ограниченное число состояний πN -системы с полным моментом $\mathcal{J} = 1/2, 3/2$ /5,7/;

3

г) дифференциальные сечения чувствительны как к формфактору пиона $F_{\pi}(k^2)$, так и к изотопвекторному формфактору нуклона $F_{\epsilon}^{v}(k^2)$;

д) при $2f^{-2} \ll k^2 \ll 44f^{-2}$ мнимая часть формфактора пиона пренебрежимо мала.

Если реакция (I) исследуется при остановках П⁻-мезонов в водороде, то вследствие малой величины переданных импульсов экспериментальные распределения слабо зависят от формфакторов адронов $^{/8}.9'$. При высоких энергиях ($E_{\pi} > 3$ Гэв) дифференциальные сечения определяются, в основном, теми значениями формфактора пиона $^{/IO/}$, которые к настоящему времени измерены в экспериментах на встречных пучках $^{/II/}$.

Первый результат по ОЭП в промежуточной области энергий был получен в работе /1/. где наблюдалось (63 + 18) событий реакции (I) при кинетической энергии пионов 275 Мэв (полная энергия в ЛN с.ц.и. равна W = 1295 Мэв). Эти данные анализировались /2/ с помощью дисперсионной модели, которая содержала в качестве свободных параметров F_{π} , F_{τ}^{\vee} и формфактор G_{M}^{π} , входящий в амплитуду магнитного дипольного перехода М., Было показано /2/, что в дифференциальные сечения основной вклад (~ 97%) дают борновские члены, а вклад от перехода M₄₊ компенсируется интерференцией M₄₊ с борновской Поэтому сечение реакции оказалось завичастью амплитуды. сящим практически только от формфакторов F_{π} и F_{τ}^{v} . В предположении $F_{\pi}(k^2) = F_{\pi}^{\nu}(k^2)$ модель хорошо описала экспериментальные распределения по четырем независимым переменным: k^2 , углу между импульсом пиона и фотона в $\pi\rho$ - с.ц.и. θ^{γ} , углу между импульсом нейтрона в электрона в (e⁺e⁻) - с.ц.н. θ в углу

между плоскостью реакции (2) и плоскостью распада фотона \mathscr{G} . Наилучшее согласие теории и эксперимента в предположении о равенстве формфакторов было получено при

$$F_{\pi} = F_{1}^{\vee} = \mathbf{I}_{0}\mathbf{0}\mathbf{7} + \mathbf{0}_{0}\mathbf{I}\mathbf{I}\mathbf{4}$$
(3)

при среднем значении квадрата переданного импульса $\overline{k^2} = 2 f^{-2}$.

В настоящей работе анализируются новые экспериментальные данные $^{/3/}$, полученные при W = 1295 Мэв. Обсуждается квазипороговое поведение амплитуды реакции (I) $^{/6/}$, существенно упрощающее теоретическую интерпретацию ОЭП по сравнению с фото- и электророждением пионов; излагается приближение, использованное при введении параметров, входящих в амплитуду реакции (2); описывается процедура определения F_{π} , F_{1}^{\vee} и соответствующих электромагнитных радиусов.

I. <u>Квазипороговое поведение амплитуды обратного</u> электророждения пионов

Теоретическая интерпретация ОЭП для некоторой области оказывается существенно проще, нежели анализ фото- и электророждения пионов.

Рассмотрим при фиксированном значении W рождение фотонов с "массами", близкими к величине \mathcal{M}_{χ}^{max} , равной:

$$\mathcal{T}_{f}^{max} \equiv \sqrt{k_{max}^{2}} \equiv W - M, \qquad (4)$$

где М - масса нуклона.

Следуя работе ^{/6/}, рождение фотонов с массами, близкими к m_{Λ}^{max} , будем называть квазипороговым процессом. Для него характерны небольшие значения трихмерного импульса фотона \overline{k} , при которых поведение мультипольных амплитуд описывается соотношениями /12/

(5)

(6)

$$\begin{split} M_{e\pm} &\sim |\vec{k}|^{c} & \ell > 1 \\ E_{e+} &\sim |\vec{k}|^{c} & \ell > 0 \\ E_{e-} &\sim |\vec{k}|^{c-2} & \ell > 2 \\ L_{e+} &\sim |\vec{k}|^{c} & \ell > 0 \\ L_{e-} &\sim |\vec{k}|^{c-2} & \ell > 2 \\ L$$

где M, E, \angle обозначают соответственно магнитные, электрические и продольные шультипольные амплитуды, а знак + (-) показывает, что полный момент системы $\int^* N$ получается из орбитального момента пиона ℓ прибавлением (вычитанием) I/2. Из соотношений (5) следует, что при любом значении Wв квазипороговой области основными являются только четыре амплитуды:

 E_{0+} , E_{2-} , L_{0+} , L_{2-} ,

а остальные переходы оказываются подавленными /6/.

Если начальная энергия пионов не превыдает 360 Цэв ($W \leq 1355$ Мэв), то \triangle (1518) не возбуддается и основной вилад в главные мультиполи ($E_{0+}, E_{2-}, \angle_{0+}, \angle_{2-}$) дают борновские члены. Поправки к борновским мультиполям в основном обусловлены дисперсионными интегралами от мнимой части M_{1+} /4,5/. Вследствие подавления этого перехода поправки будут малы.

2. Параметры модели

Дифференциальные сечения вычислялись по формулам работы/13/. Амплятуда реакции (2), входящая в эти соотножения, записывалась в упрощенной форме /14/, учитывающей электрический дипольный переход E_{0+} , магнитный дипольный переход M_{1+} и мезонный ток в борновском приближении. Параметрами использованного варианта модели при фиксированном значении k^2 являются $F_{\pi}(k^2)$, $F_1^{\vee}(k^2)$ и $G_{M}^{\vee}(k^2)$. Как было показано в работе/2/, в условиях настоящего опыта влияние величины G_{M}^{\vee} на дифференциальные сечения практически отсутствует. Поэтому теоретические распределения оказываются зависящими только от двух формфакторов $F_{\pi}(k^2)$ и $F_1^{\vee}(k^2)$. Следует подчеркнуть, что F_{π} и F_1^{\vee} входят в полюсную часть амплитуды виртуального фоторождения, являясь сомножителями в вычетах. Так как вычеты берутся в точке, где виртуальные частицы находятся на массовой поверхности, то F_{π} и F_1^{\vee} зависят только от k^2 и являются аналитическими продолжениями в область времениподобных передач формфакторов, входящих в амплитуду упругого $\mathcal{C}\pi - \mu \mathcal{C}N$ -рассеяния.

Формфактор \mathcal{R} -мезона, начиная с $k^2 > 4m_{\mathcal{R}}^2$, становится комплексным. При малых k^2 в выражении для его мнимой части можно ограничится двухпионным промежуточным состоянием /I4/:

 $Im F_{\pi}(k^{2}) = Re F_{\pi}(k^{2}) tg \delta_{1}^{\prime}, \qquad (7)$

где $\delta_1' - \phi_{a3a} \mathcal{T} \mathcal{T}$ -рассеяния в состоянии $I = \mathcal{I} = I$. Вплоть до значений $\sqrt{k^2} = 500$ Мэв δ_1' мала ($tg \ \delta_1' \approx \delta_1'$) и хорошо аппроксимируется зависимостью:

 $\delta_1^1 = a_1^1 p^3$, $p = \sqrt{\frac{k^2}{4} - m_\pi^2}$, (8) где a_1^1 - длина рассеяния, равная /15/:

 $a_1^{\prime} = 0,036 \pm 0,002$

7

(комптоновская длина волны пиона принята за единицу). Из формул (7), (8), (9) следует, что даже при $k^2 = 3f^{-2}$ мнимая часть F_{π} пренебрежимо мала, составляя 2% от реальной.

Надежных количественных оценок для мнимой части F_1^{v} получить в настоящее время нельзя. В данной работе предполагалось, что при $k^2 \leq 3 f^{-2}$ Im $F_1^{v}(k^2) = 0$.

3. Определение формфакторов

Для определения формфакторов $F_{\pi}(k^2)$ и $F_{\mu}'(k^2)$ анализировались 234 случая, идентифицированные в нашей предыдущей работе /3/. Эти события разбивались на три группы в зависимости от значения k^2 (таблица I).

Ж группы	I	2	3
Интервал $k^2 \ в (GeV/c^2)^2$	0.050+0.075	0.075+0.IO0	0.100+0.150
Среднее значение k^2 (GeV/c ²) ² (f ⁻²)	0.067 I.72	0.087 2.23	0.112 2.88
Число событий	53	83	98

Таблица І

Для каждой группы строились распределения событий по трем независимым переменным: $Cos \theta$, $Cos \theta$, $Cos \varphi$ (рис.1). Дифференциальные сечения сравнивались с теоретическими, которые моделировались методом Монте-Карло для реальных значений формфакторов, лежащих в пределах

 $0 \leq F_{\pi}$, $F_{t}^{v} \leq 2$

Рис.І. Распределения событий по углу вылета фотона в (πN) – с.ц.и. Θ^{r} , углу между электроном и нейтроном в с.ц.и. $e^{+}e^{-}\Theta^{-}$ и углу между плоскостью реакции $\pi^{-}\rho \rightarrow j^{*} + \pi$ и плоскостью распада j^{*} на электрон и позитрон? Распределения построены для средних значений квадратов переданного импульса $1,7f^{-2}$, $2,2f^{-2}$, $2,9f^{-2}$. Пунктирные кривые вычислены в предположении о точечности пиона и нуклона ($F_{\pi} = F_{1}^{*} = I$). Сплопные кривые рассчитаны со значениями формфакторов, приведенными в таблице II.

9

и изменявшихся с шагом 0,05. Для кандой комбинации значений F_{π} и F_1^{\vee} теоретическое распределение по $Cos \theta^{\vee}$ сравнивалось с экспериментальным и вычислялось соответствующее значение χ^2 .

Для случая точечных частиц

 $F_{\pi}(k^2) = F_1^{\vee}(k^2) = 1$ модель хорошо описала распределение по $Cos \theta^{T}$ для событий пер-вой группы ($f^{2} = 2.7, f^{2} = 4^{\text{X}}$), хуже – для второй($f^{2} = 9.1$, $\overline{x^2} = 5$) и третьей ($x^2 = 32, \overline{x^2} = 5$). Соответствующие кривые нанессны на рисунке пунктирной линией. При $k^2 = 1.7 f^{-2}$ влияние формфакторов на дифференциальные сечения должно быть относятельно слабым. Поэтому хорошее согласие экспериментальных данных для этой точки с вычисленными распределениями дает основание использовать модель для определения формфакторов. Так как модель не учитывает ряда мультиполей. Вдияние которых незначительно только в квазипороговой области, то согласие теории и эксперимента можно рассматривать как указание на квазипороговое поведение амплитуды реакции (2) уже при $\overline{k^2} = 1.7 f^{-2}$. Вследствне этого точность теоретического описания должна улучшаться по мере увеличения $\overline{k^2}$ (при финсированном W). Отсутствие согласия между теорией и экспериментом при $k^2 = 2,2f^{-2}$ и 2,9 f^{-2} вероятнее всего обусловлено влиянием структуры адронов, а не модельными неопределенностямя.

Из экспериментов по электророждению пионов следует /16/, что при $k^2 < 0$ выполняется соотношение:

 $F_{\pi}(k^2) = F_1^{v}(k^2)$

(IO)

^к Здесь и ниже X² означает ожидаекое значение величины X².

10

При анализе данных по ОЭП предполагалось, что соотношение (IO) выполняется и во времениподобной области переданных импульсов. Значения параметров определялись из анализа сечений $\frac{d6}{dCoser}$. Найденные значения параметров приводятся в таблице П.

	<u>Таблица II</u>	
$F_{\pi} = F_{4}^{\nu}$	x ²	$\overline{x^2}$
I,10 <u>+</u> 0,07	I,0	3

3,6

3,0

I,I4 <u>+</u> 0,06

 $1,30 \pm 0,07$

 $\overline{k^2}$

 $1,7 f^{-2}$ $2,2 f^{-2}$

 $2,9f^{-2}$

Из таблицы II следует, что предположение о равенстве формфакторов и отсутствии $Im F'_{4}$ позволяет хорошо описать $\frac{d 6}{d \cos \theta^{2}}$. Соответствующие расчетные кривые изображены на рис.I сплошными липияли. Полученные значения параметров использовались для вычисления распределений по двуи другим независиичи переменным $Cos \theta$ и $Cos \varphi$ (сплошные линии на рис.I). Видно, что дифференциальные сечения по этим переменным чакже хоропо описываются теоретическими привыми о параметрани, изятыми гв таблицы II. Следует заметить, что распределения но $Cos \theta$, $Cos \theta^{\delta}$ и $Cos \varphi$ для каждого значения k^{2} получены по одной и гой же группе событий и не являются подностью перависинима.

Ошноки, приведенные для формфакторов в таблице П к на рис.I, лвляются чисто статистическими и не включают погранность в вначения подного сечения. Если учесть вту погревность, то значения формфакторов одновременно изменяются на величину +8%, которая

- 11

должна быть сложена квадратично с ошибками, приведенными в таблице П. Среди анализируемых событий имеется (20 \pm 7)% фоновых случаев, большая часть которых генерирована на стенках аппендикса мишени. Вклад фоновых событий в полное сечение учитывался. Влияние фона на форму дифференциальных сечений не рассматривалось, ввиду отсутствия достаточной информации о характере фоновых распределений. Однако фактически влияние фона на величины формфакторов учитывалось в достаточной степени, так как в предположении $F_{\pi} = F_{\tau}^{\nu}$ вначения формфакторов в основном зависят от величин полных сечений.

По данным, полученным в предположении $F_{\pi}(k^2) = F_1^{\nu}(k^2)$, был определен электромагнитный радиус. При этом ошибки для формфакторов при $\overline{k^2} = \mathbf{I}, 7f^{-2}, 2, 2f^{-2}, 2, 9f^{-2}$ брались из таблицы П, а погрешность <u>+</u> 8% приписывалась величине $F_{\pi}(0) = F_1^{\nu}(0) = \mathbf{I}$. Четыре полученных значения хорошо ($x^2 = \mathbf{I}, 5, \overline{x^2} = 2$) аппроксимировались зависимость:

$$F_{1}^{v}(k^{2}) = 1 + \frac{1}{6} Z_{F_{1}^{v}}^{2} k^{2}$$
(II)

при значении

$$\mathcal{R}_{\pi} = \mathcal{R}_{F}^{\nu} = (0.75 \pm 0.14) f.$$
 (12)

Полученное значение электромагнитного радиуса хорошо совпадает с величиной, измеренной в экспериментах по упругому *CN* -рассеяныр /17/

 $Z_{F_{1}}^{v} = 0,82 f_{1}$

Значения формфакторов из таблицы II представлены на рис.2. На этом же рисунке нанесены данные по формфактору $F_{\pi}(k^2)$, полученные в экспериментах по элэктророждению пионов, и значение $F_{7}^{\nu}(k^2)$, вычисленное с помощью дипольной формулы /IS/ (сплошная кривая).

Рис.2. Сплошная кривая описывает значение F_1^{\vee} в области пространственноподобных передач. Продолжение во времениподобную область выполнено с помощью дипольной формулы. Экспериментальные точки при $k^2 < 0$ описывают значения $F_{\mathcal{R}}$, подученные в экспериментах по электророждениям пионов. Значения $F_{\mathcal{R}}$ и F_1^{\vee} , измеренные при $k^2 > 0$, в настоящей работе показаны ромбами. Приведены только статистические онибки. Если распределения по $Cos \theta^{\delta}$ анализировать, предполагая F_{π} и F_{i}^{\prime} независимным параметрами, то их значения удается определить достаточно хорошо только при $\overline{k^{2}} = 2.9 f^{-2}$. Для двух других значений $\overline{k^{2}}$ можно указать только интервалы изменения параметров на уровне 68% достоверности. Соответствурцие результаты приведены в таблице Ш.

Таблица	El

 $\overline{k^2}$	F ₁ ^v	F _{TT}
$1,7f^{-2}$ 2,2 f^{-2}	0,8 + I,2 0,6 + I,3	0,5 * 1,2 < 1,2
2,9f ⁻²	I,4 +0,I -0,2	I,2 +0,2

В заключение авторы считают своим долгом поблагодарить С.Б.Герасимова, Б.М.Понтекорво и Ф.Г.Ткебучава за полезные обсуждения, Л.И. Лапидуса - за внимание к работе.

INTEPATYPA

- Ю.К.Акимов, С.Ф.Бережнев, А.В.Демьянов и др. Яф <u>13</u>, 748 (1971).
- С.Ф.Бережнев, Л.С.Вертоградов, А.В.Демьянов и др. ЯФ <u>16</u>, 185 (1972).
- С.Ф.Бережнев, А.В.Демьянов, А.В.Куликов и др. ОИЯИ, РІ-6624, Дубна, 1972.
- 4. G.F.Chew, M.L.Goldberger, F.E.Low, Y.Namby. Phys.Rev., <u>106</u>, 1345 (1957).
- 5. A. Donnachie, G. Shaw. Annals Phys., 37, 333 (1966).
- 6. D.C.Суровцев, Ф.Г.Ткебучава. ОИЯМ, Р4-6475, Дубна, 1972.
- 7. C.Mistretta et al. Phys.Rev., <u>184</u>, 1437 (1969).

8. S.Devons et al. Phys.Rev., 184, 1356 (1969).

- 9. R.Garland. Ph.D.Thesis, Columbia University, Nevis-188, 1971.
- IO. M.N.Khachaturyan et al. Phys.Lett., 24B, 349 (1967).
- II. В.Л.Ауслендер, Г.И.Будкер, Е.В.Пахтусова и др. ЯФ <u>9</u>, 114 (1969).
 J.E.Augustin et al. Phys.Lett., <u>28B</u>, 503 (1969),

ibid <u>28B</u>, 508.

I2. N.Zagury. Phys.Rev., 145, 1112 (1966).

13. D.C.Суровцев, Ф.Г.Ткебучава. ОИЯИ, Р2-4561, Дубна, (1968).

15

I4. W.Fraser, J.Fulco. Phys.Rev.Lett., 2, 365 (1959).

- I5. M.R.Pennington, S.D.Protopopescu, LBL-963, Berkeley, 1972.
- I6. K.Berkelman. Proc. 1971 Intern. Symp. on Electron and Photon Interac. at High Energies. Ed. N.B.Mistry Cornell Univ. Ithaca, N.Y. pp. 263-279.
- 17. L.H.Chan et al. Phys.Rev., 141, 1298 (1966).
- I8. M.Goitein, J.R.Dunning, R.Wilson. Phys.Rev.Lett., <u>18</u>, 1018 (1967).
- K.Aizu. Proc.Int.Conf.Theor.Phys., Kyoto and Tokyo, 1953.
 K.M.Watson, Phys.Rev., <u>95</u>, 228 (1954).
 E.Fermi. Suppl.Nuovo Cimento, <u>2</u>, 17 (1955).

Рукопись поступила в издательский отдел 6 февраля 1973 года.

. . .

. .

12. J. 1. 62. State