ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

6814

В.С.Евсеев, В.С.Роганов

ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ РЕАКЦИИ (μ , $\nu 2n$) ПРИ μ -ЗАХВАТЕ В СЕРЕ И КАЛЬЦИИ

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

P1 - 6814

В.С.Евсеев, В.С.Роганов

ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ РЕАКЦИИ (μ , $\nu 2n$) ПРИ μ -захвате в сере и кальции

Направлено в ЯФ

Измерение вероятности испускания разного числа нуклонов в реакции ядерного μ^- захвата представляет большой интерес с точки зрения проверки различных моделей этой реакции. В частности, вероятность вылета двух иейтроиов определяется конкуренцией нескольких процессов: "испарения" нуклонов в модели составного ядра, последовательного испускания нуклонов в так называемой "резонансной" модели ядерного μ^- -захвата, испускания пар нуклонов при поглощении мюона нуклонными ассоциациями в ядре и т.д.

Вероятность Ψ_{2n} реакцин (μ^{-}, ν^{2n}) ранее определялась /1/ методом замедления и регистрации нейтронов в органическом сцинтилляторе большого объема. При этом непосредственно на опыте измеряется некоторая функция, зависящая как от вероятности испускания одного, двух и т.д. нейтронов, так и от эффективности замедления и регистрации нейтронов.

Согласно последним экспериментальным данным энергетический спектр нейтронов от μ^- захвата простирается по крайней мере до 60 Мэв^{/2,3/}. Если часть этих нейтронов коррелирована / μ^- захват на квазидейтроне/, это должно отразиться на величине W_{2n} . Это обстоятельство могло остаться незамеченным в работе^{/1/}, поскольку вероятность регистрации нейтронов столь высоких энергий в условиях этого опыта невелика /калибровка эффективности детектора проводилась для энергии нейтронов $E_n \leq 15$ Мэв с использованием в качестве источника иейтронов спонтанно делящегося ²⁵² Cf /.

В настоящей работе значение \mathbb{W}_{2n} для реакции (μ^- , ν^{2n}) в сере и кальции измерено активационным методом путем регистрации актов распада радиоактивных ядер - продуктов следующих реакций:

$$\mu^{-} + S^{32} \rightarrow \nu + 2n + P^{30} \qquad \beta^{+}$$

$$T_{\frac{1}{2}} = 2,55 \text{ Muh } E_{max} = 3,5 \text{ M} \Im B ,$$

$$\mu^{-} + Ca^{40} + K + 2n + K \qquad \beta^{+}$$

$$T_{\frac{1}{2}} = 7,55 \text{ Muh } E_{max} = 2,5 \text{ M} \Im B .$$

3

Преимущество данного метода состоит в том, что абсолютная величина W_{2n} определяется для всего спектра нейтроиов независимо от их энергии.

Наведенная активность регистрировалась путем счета β -частиц'/А/, одного из аннигиляционных γ -квантов /Б/ и двух аннигиляционных квантов в режиме совпадений /В/. В случае серы измерения проводились всеми тремя методами, в случае кальция - только методами Б и В.

В качестве мишеней использовались образцы с естественным содержанием изотопов. Анализ возможных при μ^{-3} ахвате в сере ядерных реакций показывает, что при измерениях методом А, помимо β -активности ${}^{30}P$, образующегося в реакции ${}^{32}S(\mu^{-},\nu_{2n}){}^{30}P$, может регистрироваться β -активность с таким же периодом полураспада и верхней границей E электронов, но связанная с образованием ${}^{28}Al$ в реакции ${}^{32}S(\mu^{-},\nu_{a}){}^{28}Al$. В случае μ^{-} -захвата в кальции другие изотопы, близкие по времени жизни к ${}^{38}K$, не образуются.

Облучение мишеней проводилось на чистом мюонном пучке, полученном с помощью мезоиного канала снихроциклотрона Лаборатории ядерных проблем ОИЯИ /4/. Система выделения мюонов /см. рнс. 1 работы /5// состояла из трех сциитилляционных счетчиков, работающих в режиме быстрых совпадений /ближайший к мишени счетчик имеет площадь 80 х 80 мм² /, и большого счетчика антисовпадений за мишенью. Мишени располагались вплотную к последнему /по пучку/ из трех счетчиков, работающих в режиме совпадений. Специальными опытами было установлено, что эффективность регистрации остановок мюонов в мишени отличается от единицы не более чем на несколько процентов /при работе с растянутым во времени пучком мюонов/.

Зависимость числа μ^- остановок в мишени от толщины фильтра, помещенного после первых двух счетчиков, снималась как с помощью упомянутых выше четырех счетчиков, так и по наведенной активности. Зависимости, снятые двумя этими способами, имеют один и тот же вид. Величина наведенной активности, измеренная без фильтра и при такой его толщиие, когда все мюоны заведомо останавливаются в нем, была неизменной и равной 4% от активности в максимуме кривой остановок. Эта активность обусловлена, по-видимому, реакциями ${}^{32}S(n,t){}^{30}P$ и ${}^{40}Ca(n,t){}^{38}K$, идущими на иейтронах рассеянного фона от ускорнтеля. Вклад от π -мезонов по наведеиной активности, измеряемой при соответствующем фильтре, не превышал 1%, что не противоречит опубликованным даниым о примеси пионов /по остановкам $O,4\%/{4/}$.

4

Мишени облучались в течение примерно трех периодов полураспада конечного ядра. Обсчет начинался спустя минуту после конца облучения и производился с интервалом 30 секунд в течение нескольких периодов полураспада. Идентификация ядер-продуктов осуществлялась по их времени жизни.

Скорость счета при регистрации продуктов распада в момент времени *t*, определяется как

$$N(t_i) = N_0 \exp \left[-\frac{t_i}{\tau}\right] + C$$
,

где N_0 - скорость распада на конец периода облучения, t_i середина *i* -го ЗО-секуидного интервала времени, r - время жизни ядра-продукта, C - фон случайных совпадений.

Зиачения N₀, т и С для каждого из облучений определялись с помощью ЭВМ методом наименьших квадратов.

Вероятность реакции ($\mu^{-}, \nu 2n$) выражается в виде

$$2n = \frac{N_0 TK}{N_{\mu} \epsilon \gamma (1 - exp[-T/\tau])}$$

где T - время облучения, N_{μ} - скорость остановок μ -мезонов в мишени /среднее значение за время T/, ϵ - эффективность регистрации, γ - поправка на вероятность μ -захвата, K поправка на изотопный состав мишени.

Метод А. Мишень состояла из восьми пластин плавленой серы площадью 70 х 70 мм² и толщиной /3,0±0,1/ мм. Регистрация позитронов производилась с помощью счетчика, состоящего из пластического сцинтиллятора /150 х 150 х 10 мм³/, соедииенного световодами с двумя ФЭУ-36, работающими в режиме быстрых совпадений. При обсчете наведенной радиоактивности пластины размещались по четыре с каждой стороны сцинтиллятора вплотную к нему, всегда в одном и том же положении. Специальными опытами была установлена независимость /в пределах 5%/ эффективности регистрации от места расположения /одного из восьми возможных/ пластины.

Эффективность регистрации є определялась путем облучения пластин нейтронами с энергией 14,8 Мэв из реакцин d(t,n)a н выделения /по времени жизни ядра-продукта/ канала реакцин ${}^{32}S(n,t){}^{30}P$, сечение которой предполагалось известиым/6/ Чнсло падающих на мишень нейтронов определялось по счету *a* -частиц и при учете телесного угла для мишени из серы. Кроме 2,55-минутной активности в этом эксперименте наблюдалась также /145±40/-минутная активность, принадлежащая, по-видимому, ядру ${}^{31}Si$.

5

Значение ϵ в пределах ±4%-ной погрешности оставалось постоянным в течение калибровки и измерений и контролировалось с помощью у-источника ⁶⁰Со в фиксированном положении. Абсолютная ошибка эффективности определялась ошибкой сечения реакции ³²S(n,t) ³⁰P^{/6/}, равного 20±5 мб.

Метод Б. Мишень из серы в виде порошка помещалась в сосуд из пенополистирола с внутренними размерами 70 x 140 /вертикальный размер/ x 40 /по пучку/ мм³, причем площадь заполненной части этого сосуда была 70 x 70 мм². Свободное пространство было оставлено для того, чтобы перед началом регистрации порошок можно было тщательно перемешать. Регистрация активности производилась по счету аниигиляционных у -квантов с помощью кристалла NaJ(Tl) /днаметром и высотой по 75 мм/, соединенного с фотоумножителем 56 AVP. Энергетическое разрешение такого у -спектрометра было около 15% для 137Cs. С помощью одноканального дифференциального дискриминатора вырезалось окошко для регистрации фотопика с энергией 511 кэв.

Для предотвращения активации кристалла нейтронным фоном

от ускорителя / реакция $\frac{127}{1+n} + \frac{128}{7} \frac{\beta}{T_{1/2} = 25}$ / спектрометр был окру-

жен слоем кадмия толщиной 0,5 мм.

Определение эффективности є производилось путем размешивания в порошкообразной мишени из серы 5 мм³ ²² NaCl с известной абсолютной активностью ²² Na.

Вероятность I_{2n} для кальция определялась по отношению к аналогичной величине для серы. Для этого были изготовлены блочные мишени из серы и кальция площадью 100 х 100 мм² н одинаковой толщины в г/см²/брусок из серы имел толщину 20 мм/. Поправки на разный эффективный телесный угол мишеней /при обсчете/, различие в торможении позитронов н на различие в распределении μ^- -остановок в обеих мишенях оказались несущественными.

Метод В. Для регистрации аниигиляционных у-квантов использовались два счетных кристалла NaJ(Tl) с разрешением около 30% для ¹³⁷Cs.В каждом из каналов с помощью одноканального дифференциального дискриминатора вырезалось окошко для фотопика 511 кэв, и сигналы от двух дискриминаторов подавались на схему совпадений. Процедура измерения /и калибровка с помощью ²² NaCl / с серой /порошок и брусок/ и кальцием /брусок/ была аналогичиа той, которая применялась в методе Б.

В таблице приведены характерные значения различных параметров и результат эксперимента. Величины Ψ_{2n} выражены в процеитах к вероятности μ^- -захвата. Основная ошибка

Реакция	Metox	Nµ, мин ⁻¹	No, тин ⁻¹	Т,тин	N°/c	ε, χ	×	r	W2n. %	
	Y	1,4.10 ⁶	2,7.I0 ³	8	6	II	I,05	0,72	4,2 <u>+</u> 1,0	
25 (u- v2n) ³⁰ D	B	1,4.10 ⁶	1,4.I0 ³	1	2	9	I,05	0,72	3,5±0,5	<u> </u>
	B	1.10 ⁶	I0 ²	1	60	0,5	I,05	0,72	2,9 <u>+0</u> ,4	
							cpe	днее	3,2±0,5	
	B	1,3•10 ⁶	4•I05	20 425	8,0	9	I ,026	64 0	5 *0 76*I	
⁴⁰ Cα(μ ⁻ , ^{ν2η)³⁸K}	B	1 •10 ⁶	30 450		25	0,5.	8	62.0	2,7 <u>+0</u> ,5	
					а 1914 г. – 1		cbe	днее	2,3 <u>40,</u> 5	
		-								r

Таблице

7%

/около ±10%/ для методов Б и В проистекает от погрешности в определении абсолютного значения ϵ . Для обеспечения достаточной статистической точности измерения для каждого метода /и каждой мишени/ повторялись по 5 - 10 раз. Скорость μ^{-} остановок в течение периода облучения оставалась постояиной с точностью в иесколько процентов. Среднее значение W_{2n} для серы взято по данным, полученым методами Б и В. Вероятность реакции ${}^{32}S(\mu^{-},\nu a) {}^{28}Al$, определяемая, как разность значений W_{2n} , измеренных методом А и другими методами, порядка 1%, если использовать для определения данные работы 6 , и порядка 10%, если использовать значение сечения реакции ${}^{32}S(n,t) {}^{30}P$, равное 7 мб, из работы 77 .

Полученное нами значение W_{2n} для кальция не противоречит данным работы /1/, где приведено $W_{2n} = /8 \pm 3/\%$.

Полученные значения \mathbb{W}_{2n} существенно меньше величины выхода нейтронов высоких энергий $/E_n \ge 15$ Мэв/, составляющей более 10% для средних и тяжелых ядер /серы, кальция, свинца /2.3//, и могут быть полностью объяснены на основе статистической модели с учетом оболочечных эффектов /1.8/ без привлечения вклада кластерного механизма μ^- захвата или в рамках "резонансной" модели ядерного μ^- захвата (9/ Значения \mathbb{W}_{2n} были недавно с хорошей точностью получены /8/ активационной методикой для ряда изотопов: Co, Ni, Fe и Mg.

Зарегистрирован большой изотопный эффект для величины W_{2n} в двух изотопах железа /в пересчете на изотопный состав железа/: для ⁵⁶ Fe $W_{2n} = /23\pm 2/\%$, а для ⁵⁴ Fe $W_{2n} = /3.7\pm 0.4/\%$. Все приведенные в этой работе значения W_{2n} также интерпретируются на основе статистической модели и модели оболочек.

То обстоятельство, что полученное нами значение \mathbb{W}_{2n} для серы и кальция существенно меньше выхода нейтронов высоких энергий, а также малое значение \mathbb{W}_{2n} для ^{54}Fe могут служить указанием на малый вклад процесса, связанного с поглощением μ -мезона парой нуклонов с большим относительным нмпульсом и сопровождающегося вылетом двух нуклонов высокой энергин / $E_n \geq 15$ Мэв/. Против объяснения высокоэнергетической части в энергетическом спектре нуклонов μ -захватом на кластерах может свидетельствовать также тот факт, что в случае μ -захвата в углероде и кислороде/10/спектр нейтронов ограничен областью малых энергий, в то время как кластерные явления в большей степени должны проявляться именно в легких ядрах.

8

Литература

1. B.MacDonald, J.A.Diaz, S.N.Kaplan, R.V.Pyle. Phys.Rev., 139, B1253 (1965).

2. M.H.Krieger, Ph.D. Thesis. Columbia Univ., NEVIS-172 (1969).

- 3. И.Войтковска, В.С.Евсеев, Т.Козловски, Т.Н.Мамедов, В.С.Роганов. ЯФ, 14, 624 /1971/.
- 4. В.Г.Варламов, Ю.М.Грашин, А.В.Демьянов, Б.А.Долгошеин, В.С.Роганов. ОИЯИ, 1-4081, Дубна, 1968.
- 5. Г.Г.Бунатян, В.С.Евсеев, Л.Н.Никитюк и др., ЯФ, 11, 795 /1970/.
- 6. E.Wiegold, R.N.Glover. Nucl. Phys., 32, 106 (1962).
- R.Sacher, A.Warhanek. Oester Akad.Wiss.Math.-Naturwiss. K1. sitzugsber. Abt. 11, 176, 305 (1968).
- 8. G.Heusser, T.Kirsten. Nucl. Phys., 195A, 369 (1972).
- 9. В.В.Балашов, Р.А.Эрамжян. ОИЯИ, Р2-3258, Дубна, 1967.

10. M.E.Plett, S.E.Sobottka. Phys.Rev., C3, 1003 (1971).

Рукопись поступила в издательский отдел 27 ноября 1972 года.