

Р.Гарфаньини, К.Георгеску, М.М.Кулюкин, В.И.Ляшенко, А.Михул, Ф.Никитиу, Г.Пираджино Д.Понтекорво, И.В.Фаломкин, Ю.А.Щербаков

ИЗУЧЕНИЕ УПРУГОГО РАССЕЯНИЯ π^{+} -мезон на ³ Не и ⁴ Не при энергии 100 мз

1972

Р.Гарфаньини,^{*} К.Георгеску, М.М.Кулюкин, В.И.Ляшенко, А.Михул, Ф.Никитиу, Г.Пираджино,^{*} Д.Понтекорво, И.В.Фаломкин, Ю.А.Щербаков

ИЗУЧЕНИЕ УПРУГОГО РАССЕЯНИЯ π^+ -мезонов на ³ не и ⁴ не при энергии 100 мэв

Направлено в Letters Nuovo Cimento

Физический институт Туринского университета, Италия

На синхроциклотроне ОИЯИ продолжаются систематические исследования рассеяния *т*-мезонов на легких ядрах $^{/1.2/}$. Исследования проводятся с помощью стримерного спектрометра с гелиевой камерой, управляемой сцинтилляционным годоскопом $^{/3/}$. Первые угловые распределения упругого рассеяния пионов обоих знаков на ядрах $^{3/le}$, полученные на этой установке, показаны на рис. 1-а,б. Постановка опыта описана в работе $^{/1/}$.

Пучок пионов имел энергию 97 ± 6 Мэв. Камера наполнялась очищенным от трития гелнем-3. Для обеспечения режима локализации разряда в газ вводились малые примеси углеводородов $^{/4/}$. Всего в интервале углов 25-165° было зарегистрировано 1585 событий упругого рассеяння пионов, которые были выделены по принятым критериям отбора.

На рис. 2-а, б приведены угловые распределения упругого рассеяния пионов на ⁴ //е при той же энергин и в том же диапазоне углов. Суммарная статистика упругих рассеяний на ⁴ //е составляет 2354 для π^- и 1447 для π^+ . На угловых распределениях показаны только статистические ошибки. Возможная ошибка в нормировке данных из-за неточного знания состава пучка, примесей в газе и др. составляет около 10% для π^{-3} //е и π^{-4} //е.

Величины полных сечений упругого рассеяния, полученные интегрированием по полному телесному углу угловых распределений, представленных в виде ряда по полиномам Лежандра, оказываются равными /в мбн/:

 $\frac{\pi^{-4}He}{\pi^{-4}He} = \frac{\pi^{+4}He}{\pi^{+4}He} = \frac{\pi^{-3}He}{\pi^{-3}He} = \frac{\pi^{+3}He}{\pi^{+3}He}$ 60,15±1,52 58,12±1,80 30,95±1,32 43,55±1,77

Как в случае 4 *He*, так и 3 *He*, минимальное число полиномов Лежандра, необходимое для хорошего описания упругого рассеяния, -4-5. На рис. 1 сплошной линией показаны кривые с n = 5 для 3 *He*.

Наборы фазовых сдвигов для амплитуды в нерелятивистском приближении $\frac{1}{2}$, полученные из угловых распределений для π^+ и π^- отдельно и по усредненному распределению, представлены в таблице 1.

Таблица 1

$\eta_2 = \chi^2 \sigma_{el.}^{strong}$ MG.),87 <u>+</u> 0,02 11,09 60,68),85 <u>+</u> 0,02 6,01 59,84), 86 <u>+</u> 0,01 9, 3 1 60,42
δ_2 , град.	4,21 <u>+</u> 0,31 (4,52 <u>+</u> 0,6 3 (4,33 <u>+</u> 0,38
¹ u	0,83 <u>+</u> 0,05	0,87 <u>+</u> 0,04	0,85 <u>+</u> 0,04
δ ₁ , град.	17,92±1,27	16,11 <u>+</u> 1,29	17,14 <u>+</u> 0,92
n o	0,55 <u>+</u> 0,08	0,51 <u>+</u> 0,08	0,53 <u>+</u> 0,06
δ ₀ ,град.	σ ⁻ -17,25 <u>+</u> 2,41	σ ⁺ -21,18 <u>+</u> 2,42	ر19,23 <u>+</u> 1,79

ŧ

1

4

На рис. 2-а, б сплошной линией показаны кривые, проведенные по фазовым сдвигам. Как уже отмечалось в работе /2/, предпочтительным оказывается набор фазовых сдвигов, получаемый с исполь-

зованием отношения $x = \frac{\sigma_{el}}{\sigma_{tot}}$ и "цепного" метода. Вследствие

этого набор фазовых сдвигов в данной работе немного отличается от предварительного результата /1/ .

В рамках импульсного приближения экспериментальные данные удовлетворительно описываются при следующих значениях выбранных параметров:

	R(⁴ He), fm	δ ¹ , град 33	ρ	x ²
$\pi^{-}_{\pi^{+}}$	1,70 <u>+</u> 0,03	0,24 <u>+</u> 0,01	0,16 <u>+</u> 0,04	26
	1,62 <u>+</u> 0,03	0,24 <u>+</u> 0,01	0,16 <u>+</u> 0,04	37

Здесь δ_{33}^{l} - фаза для π^{N} в состоянии (3/2,3/2), ρ - введенная в S - волну мнимая часть ($S \rightarrow S + i\rho$), необходимая в случае связанного нуклона. Значение $R({}^{4}He)$ получается больше величины 1,45±0,03 ф, полученной в работе /s/.

Измерение при одной и той же энергии упругого рассеяния пионов на ⁴*He* и ³*He* позволило получить угловые распределения для рассеяния π^+ -и π^- -мезонов на нейтроне ядра ⁴*He*. Эти распределения приведены на рис. 3-а,б. Они показывают, какой вклад в когерентное рассеяние вносится отдельным нейтроном как в случае π^+ , так и π^- -взаимодействия. Такие дифференциальные сечения могут быть использованы для проверки модельных представлений, применяемых для описания взаимодействия пионов с нуклонами ядра на основе использования параметров свободного πN -рассеяния.

Литература

- I.V.Falomkin, M.M.Kulyukin, V.I.Lyashenko, F.Nichitiu, G.Pontecorvo, Ya.A.Shcherbakov. Lett.Nuovo Cimento 3, 461 (1972);
- I.V.Falomkin, M.M.Kulyukin, V.I.Lyashenko, A.Mihul, F.Nichitiu, G.Piragino, G.Pontecorvo, Ya.A.Shcherbakov.

На рис. 2-а, б сплошной линией показаны кривые, проведенные по фазовым сдвигам. Как уже отмечалось в работе /2/, предпочтительным оказывается набор фазовых сдвигов, получаемый с исполь-

зованием отношения $x = \frac{\sigma_{el}}{\sigma_{tot}}$ и "цепного" метода. Вследствие

этого набор фазовых сдвигов в данной работе немного отличается от предварительного результата /1/ .

В рамках импульсного приближения экспериментальные данные удовлетворительно описываются при следующих значениях выбранных параметров:

	R (⁴ He), fm	δ ¹ , град 33	ρ	X ²
π^+	1,70 <u>+</u> 0,03	0,24 <u>+</u> 0,01	0,16 <u>+</u> 0,04	26
	1,62 <u>+</u> 0,03	0,24 <u>+</u> 0,01	0,16 <u>+</u> 0,04	37

Здесь δ_{33}^{l} - фаза для π^{N} в состоянии (3/2,3/2), ρ - введенная в *S* -волну мнимая часть ($S \rightarrow S + i\rho$), необходимая в случае связанного нуклона. Значение $R({}^{4}He)$ получается больше величины 1,45±0,03 ф, полученной в работе /5/.

Измерение при одной и той же энергии упругого рассеяния пионов на ⁴*He* и ³*He* позволило получить угловые распределения для рассеяния π^+ -и π^- -мезонов на нейтроне ядра ⁴*He*. Эти распределения приведены на рис. 3-а,б. Они показывают, какой вклад в когерентное рассеяние вносится отдельным нейтроном как в случае π^+ , так и π^- -взаимодействия. Такие дифференциальные сечения могут быть использованы для проверки модельных представлений, применяемых для описания взаимодействия пионов с нуклонами ядра на основе использования параметров свободного πN -рассеяния.

Литература

- I.V.Falomkin, M.M.Kulyukin, V.I.Lyashenko, F.Nichitiu, G.Pontecorvo, Ya.A.Shcherbakov. Lett.Nuovo Cimento 3, 461 (1972);
- I.V.Falomkin, M.M.Kulyukin, V.I.Lyashenko, A.Mihul, F.Nichitiu, G.Piragino, G.Pontecorvo, Ya.A.Shcherbakov.

- I.V.Falomkin, M.M.Kulyukin, V.I.Lyashenko, A.G.Petrov, G.Pontecorvo, Yu.A.Shcherbakov. Intern.Symp. on Nucl. Electronics, Versailles, 1968.
- I.V.Falomkin, M.M.Kulyukin, G.Pontecorvo, Yu.A.Shcherbakov. Nucl.Instr. Meth., <u>53</u>, 266 (1967).
- 5. M.M.Block, I.Kenyon, J.Keren, D.Koetke, P.Malhotra, P.Mazur, R.Walker, H.Winzeler. Physics Lett., 26B, 464 (1968).
- 6. G.Giacomelli, P.Pini, S.Stagni. A.Compilation of pion-nucleon scattering data.CERN-HERA 69-1.

Рукопись поступила в издательский отдел 25 августа 1972 года.

ų.

Рис. 1. Угловые распределения упругого рассеяния π^- и π^+ -мезонов на ${}^{3}He$; $a/\pi^{-3}He$, $6/\pi^{+3}He$.

Рис. 2. Угловые распределения упругого рассеяния пионов на ${}^{4}He$; $a/\pi^{-4}He^{-6}/\pi^{+4}He^{-6}$.

Рис. 3. Дифференциальные сечения a/π^{-n} и $6/\pi^{+n}$ рассеяния на нейтроне ядра ${}^{4}_{He}$; О - сечения упругого рассеяния π^{+} -мезона на свободном протоне при 98 Мэв