1-932 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна. 4371

P1 - 6650

А.Л. Любимов

1972

KMX JHEPI

ЕЩЕ ОДНО ВОЗМОЖНОЕ ОБЪЯСНЕНИЕ НЕСООТВЕТСТВИЯ ДАННЫХ О ВЕРОЯТНОСТЯХ РАСПАДОВ К $^{\circ}_{L} \rightarrow 2 \gamma$ и К $^{\circ}_{-} \rightarrow 2 \mu$

Направлено в Physics Letters

еще одно возможное объяснение несоответствия данных о вероятностях распадов к $_{L}^{\circ} \rightarrow 2 \gamma$ и к $_{L}^{\circ} \rightarrow 2 \mu$

А.Л. Любимов

P1 - 6650

Любимов А.Л.

3034

P1 - 6650

Еще одно возможное объяснение несоответствия данных о вероятностях распадов $K_L^o \rightarrow 2\gamma$ и $K_L^o \rightarrow 2\mu$.

Существующее противоречие между измеренными вероятностями распадов K_L° -мезонов на 2 фотона и на 2 мюона можно объяснить предположением о том, что в экспериментах по определению доли распадов $K_L^{\circ} \rightarrow 2\gamma$ в действительности наблюдался распад на 2γ -кванта в основном не K_L° -мезонов, а некоторых неизвестных нейтральных мезонов с массой, меньшей m_K° на = 15 Мэв. Распад этих мезонов на 2 мюона в эксперименте по поиску распада $K_L^{\circ} \rightarrow 2\mu$ не мог быть обнаружен. Рассматриваются возможности образования этих мезонов и обсуждаются их квантовые числа.

Препринт Объединенного института ядерных исследований. Дубна, 1972

Lyubimov A.L.

P1 - 6650

One More Possible Explanation of the Inconsistency of the Measured Decay Rates $K_L^o + 2\gamma$ and $K_L^o + 2\mu$.

The existing contradiction between the measured decay rates $K_L^\circ \rightarrow 2\gamma$ and $K_L^\circ \rightarrow 2\mu$ is explained by the assumption that in experiments for measuring the decay rates $K^\circ \rightarrow 2\gamma$, the two gammas originate mainly from the decay of some unknown neutral meson lighter than the K_L° . The possibilities of creation of these mesons and their quantum numbers are discussed.

Preprint. Joint Institute for Nuclear Research. Dubna, 1972 В настоящее время для парциальных ширин распада K_L^{α} -мезонов на 2 фотона и на 2 мюона получены экспериментальные значения /1.2/

$$\frac{\Gamma(K_L^{\circ} \rightarrow 2\gamma)}{\Gamma(K_L^{\circ} \rightarrow BCe)} = (1, 9 \pm 0, t) \times 10^{-4}, \qquad (1/)$$

$$\frac{\Gamma(K_L^{\circ} \rightarrow 2\mu)}{\Gamma(K_L^{\circ} \rightarrow BCe)} \leq 1.8 \times 10^{-9}. \qquad (2/)$$

Как известно, данные /1/ и /2/ находятся в противоречии друг с другом, поскольку из теории следует соотношение ^{/3/}

 $\frac{\Gamma(K^{\circ}_{L} \rightarrow 2\mu)}{\Gamma(K^{\circ}_{L} \rightarrow 2\gamma)} \leq 1.2 \times 10^{-5}, \qquad /3/$

что совместно с /1/ дает для распадов $K^{\circ}_{L} \rightarrow 2\mu$ противоречащую /2/ нижнюю границу

$$\frac{\Gamma(K_L^{\circ} \rightarrow 2\mu)}{\Gamma(K_L^{\circ} \rightarrow BCe)} \ge (6 \pm 0.5) \times 10^{-9}.$$
 /4/

Многочисленные гипотезы, предложенные для решения "проблемы $K_L^{\circ} \rightarrow 2\mu$ распада", основаны на отказе от предположений, положенных в основу вывода соотношения /3/ и, соответственно, на отказе от самого соотношения /3/. При этом в предложенных до

сих пор гипотезах предполагается случайная компенсация мнимой части амплитуды ожидаемого распада $K_L^\circ \rightarrow 2\mu$ /проходящего через двухфотопное промежуточное состояние/ неким новым механизмом, вводимым соответствующей гипотезой /см. обзор /4//.

В настоящей работе предлагается объяснение противоречия между результатами /1/ и /2/, не требующее отказа от справедливости соотношения /3/ и не требующее указанной компенсации амплитуды распада $K_L^o \rightarrow 2\mu$.

ды распада к_L → 2µ. Суть предлагаемой гипотезы состоит в предположении, что распадов $K_L^{\circ} \rightarrow 2\gamma$ заметно меньше 5 x 10⁻⁴ /и не доля противоречит наблюденной верхней границе распада K° - 2 µ /, но что в экспериментах по измерению распадов K[°]_L → 2 γ из-за недостаточно точного определения массы распадающейся частицы в действительности наблюдался в основном распад на 2_V-кванта не К°, мезона, а некоторой другой нейтральной частицы с массой, несколько меньшей массы K° -мезона. Распад этой частицы на 2 мюона в эксперименте $^{/2/}$ не мог бы имитировать распад $K^{\circ}_{,} \rightarrow 2\mu$ вследствие хорошего разрешения по массе в этом эксперименте и не мог бы быть обнаружен, если бы ее масса не превышала 485 Мэв, так как, начиная с этой массы и ниже, в эксперименте /2/ наблюдался значительный фон в спектре эффективных масс системы $\mu\overline{\mu}$, вызванный распадами $K_L^{\circ} \rightarrow \pi \mu \nu$. Разрешение по массам в выполненных экспериментах по измерению распадов $K_L^{\circ} \rightarrow 2\gamma$ не позволило бы от-делить K_L° -мезоны от других, распадающихся на 2γ -кванта, частиц, с массой, на 15-20 Мэв меньшей т.....

Следует отметить, что в эксперименте ^{/5/}, где эффективные массы частиц, распадавшихся на 2 фотона, определялись наиболее точно, максимум распределения по массам смещен от массы K° -мезона на $\approx 1\%$ в меньшую сторону.

Таким образом, предлагаемая гипотеза не противоречит экспериментам, в которых были получены результаты /1/ и /2/. Чтобы избежать противоречия с экспериментами подругим, прежде всегозаряженным, модам распада K_L^{o} -мезона, следует предположить, что распад предполагаемых частиц на 2 фотона является основным /или, по крайней мере, идет с вероятностью в десятки процентов/.

Существуют в принципе две возможности для образования предполагаемых новых частиц, имитировавших распад $K_L^\circ \rightarrow 2\gamma$: А/ рождение в сильных взаимодействиях, наряду с рождением $K^\circ / \bar{K}^\circ /$ мезонов; В/ образование в распадах K_L° - мезонов. Слу-

4

чай /А/ по ряду причин является весьма маловероятным^{7/} и мы его рассматривать не будем. Рассмотрим подробней случай /В/.

Предположение об образовании предполагаемой частицы в распадах K_L° снимает трудности, связанные с независимостью измеренной доли распадов $\Gamma(K_L^\circ - 2\gamma) / \Gamma(K_L^\circ - BCe)$ от спектра и условий рождения K_L° -мезонов.

Для объяснения совокупности рассмотренных экспериментальных данных необходимо, чтобы K_L° -мезон с частотой $\approx 10^{-3}$ образовывал, распадаясь, нестранный бозон с массой ≈ 480 Мэв, распадающийся в основном на 2 фотона. Какие квантовые числа должна иметь частица в этом случае? Изотопический спин T=0 /чтобы не было заряженных партнеров/, G -четность G = +1 /чтобы не было распадов на 3π -мезона по сильному взаимодействию/. Поскольку нестранные мезоны с $T^{-G} = 0^+$ обозначают знаком $\eta^{-1/2}$, обозначим предполагаемую частицу η_2 . Чтобы не было распада на 2π -мезона, пространственная четность η_2 -мезона должна удовлетворять соотношению $P = (-1)^{J+1}$, где J-спин. Это допускает значения $J^P = 0^-$, 1^+ , 2^- , 3^+ и т.д. Однако предположить для η^- мезона спин О или 1 нельзя. Действительно, при $J \coloneqq 0$ распад $K_L^{\circ 2} \eta_2 + \gamma$ был бы запрещен /О-О переход/, а распады $K_L^{\circ 2} \eta_2 + e^+ + e^-$ и $K_L^{\circ 2} \eta_2 + \gamma + \gamma$ должны быть чрезвычайно сильно подавлены */, распад ${}^{2}K_{L}^{\circ 2} \eta_2 + \nu + \overline{\nu}$

^{*/} Например, в этом случае должны бы быть близкими времена жизни и энергетические спектры K_L° -мезонов и предполагаемых частиц /чтобы объяснить близость измеренных значений $\frac{\Gamma(K_L^\circ \rightarrow 2\gamma)}{\Gamma(K_L^\circ \rightarrow BCE)}$ при энергиях K_L° -мезонов, различающихся в несколько раз/, должен был бы существовать заряженный изотопический партнер, который не был обнаружен, и т.д.

Для сравнения укажем, что доли сходных распадов, для которых фазовый объем гораздо больше, составляют /1/ Г(K[±]-, πe⁺e⁻)

 $\frac{\Gamma(K^{\pm} \rightarrow \text{BCe})}{\Gamma(K^{\pm} \rightarrow \pi\gamma\gamma)} < 0.4 \times 10^{-6}$ $\frac{\Gamma(K^{\pm} \rightarrow \pi\gamma\gamma)}{\Gamma(K^{\pm} \rightarrow \text{BCe})} < 3.5 \times 10^{-5}$

5

распад на 2 фотона запрещен $^{/6/}$. Из остающихся допустимыми значений спина наименьшее J = 2. Считая более высокие значения спина маловероятными, припишем η_2 -мезону квантовые числа $T^{-G}(J^{-P}) = O^{-1}/2^{-7}/$. В этом случае возможно образование η_2 -мезона за счет распада

$$K_{L}^{\circ} \rightarrow \eta_{2} + \gamma$$

/6/

Так как фазовый объем для распада на 3π -мезона у η_2 -мезона значительно меньше, чем у η -мезона, то можно ожидать, что доля распадов на 2 фотона у η_2 -мезона больше, а доля заряженных распадов /в основном распадов $\pi^+ \pi^- \pi^\circ$ / у η_2 -мезона меньше, чем у η -мезона.

Образующийся в распаде /6/ у -квапт с энергией 15 Мэв трудно обпаружить, если пе производить специального поиска. Вызываемые им отклопения от компланарности двух фотонов высокой энергип незначительны, энергия этого у -кванта в лабораторной системе координат при импульсах K_L° -мезопов, использованных в экспериментах по измерению распадов $K_L^{\circ} + 2y$, также невелика, вследствие чего вероятность его конверсии понижена, а образующиеся при конверсии электроны и позитроны закручиваются в спирали очень малого размера. Поэтому совокупность опытов по наблюдению распадов K_L° -мезонов не противоречит наличию распада /6/ с вероятностью 10-3 от полной вероятности распада K_L° -мезона.

Существование η_2 -мезона вряд ли было бы обнаружено и в опытах по рождению в сильных взаимодействиях, так как сечение его образования может быть мало, а распады плохо поддаются наблюдению.

Поскольку η_2 -мезон должен распадаться на 2 фотона, то должно также происходить фоторождение η_2 -мезона в кулоновском поле ядер / эффект Примакова/. Однако в опытах по фоторождению η -мезона на ядрах ^{/7/} образования η_2 не наблюдалось, что ограничивает сечение возможного фоторождения η_2 -мезона за счет эффекта Примакова величиной, приблизительно на порядок меньшей, чем для η -мезона. Так как сечение рождения за счет эффекта Примакова пропорционально ширине распада на 2 фотона, $\Gamma_{\gamma\gamma}$, то отсюда вытекает и соответствующее ограничение на величину $\Gamma_{\gamma\gamma}$ для

6

 η_2 -мезона. Сходное ограничение накладывается и на величину полной ширины Г, поскольку отношения $\Gamma_{\gamma\gamma}/\Gamma$ для η_2 и η -мезонов должны быть одного порядка.

Приношу глубокую благодарность А.М.Балдину, Ю.А.Будагову, В.Л.Любошицу и Л.Б.Окуню за полезные обсуждения.

Литература

1. Particle data group. Review of particle properties. Phys.Lett., <u>39B</u>, April 1972.

 A.R.Clark, T.Elioff, R.C.Field, H.J.Frisch, R.P. Johnson, L.T. Kerth, W.A. Wenzel. Phys.Rev. Lett., <u>26</u>, 1667 (1971).

- L.M. Sehgal. Phys.Rev., <u>183</u>, 1511 (1969).
 C. Quigg, Y.D. Johnson. UCRL Report 18487.
- А.Д.Долгов, В.И.Захаров, Л.Б.Окунь, УФН, 107, в.4 /1972/.
 М. Banner, J.W. Cronin, J.K. Liu, J.E. Pilcher. Phys.Rev., <u>188</u>, 2033 (1969).

6. Л.Д.Ландау. ДАН СССР, 50, 207 /1948/.

7. C. Bemporad, P.L. Braccini, L. Foa, L.Lübelsmeyer,
 D. Schmitz. Phys. Lett., 25B, 380 (1967).

Рукопись поступила в издательский отдел 10 августа 1972 года.

111: