5-911 объединенный институт ядерных исследований

Дубна.

3343

P1 - 6549

2/2 - 72

С.А.Бунятов, В.С.Курбатов, А.К.Лиходед, Г.М.Штауденмайер

ПАРЦИАЛЬНО-ВОЛНОВОЙ АНАЛИЗ РЕАКЦИЙ П ~ П П П ВБЛИЗИ ПОРОГА ОБРАЗОВАНИЯ Δ1236 - РЕЗОНАНСА С УЧЕТОМ ВКЛАДА ТРЕУГОЛЬНОГО ГРАФИКА

Часть II. Результаты анализа. Оценка длины **ПП** -рассеяния **а**о

# С.А.Бунятов, В.С.Курбатов, А.К.Лиходед, Г.М.Штауденмайер<sup>2</sup>

# ПАРЦИАЛЬНО-ВОЛНОВОЙ АНАЛИЗ РЕАКЦИЙ **П** М — П П N ВБЛИЗИ ПОРОГА ОБРАЗОВАНИЯ **Δ** 1236 - РЕЗОНАНСА С УЧЕТОМ ВКЛАДА ТРЕУГОЛЬНОГО ГРАФИКА Часть II. Результаты анализа.

Оценка длины  $\pi\pi$  -рассеяния  $\mathbf{a_0}$ 

Направлено в ЯФ

CONNALIDE LEI EISTENYY EREPLEIX BECHEROSANNU EMEINNOTEKA

<sup>&</sup>lt;sup>1</sup> Институт физики высоких энергий, Серпухов. <sup>2</sup> ЦЕРН. Женева.

В работе<sup>/1/</sup> была описана модель парциально-волнового анализа реакций  $\pi N \rightarrow \pi \pi N$  с учетом вклада треугольного графика. В настоящей работе приводятся результаты анализа, проведенного на основе описанной модели всех пяти каналов реакций  $\pi N \rightarrow \pi \pi N$  при энергиях (430-450) Мэв и дается оценка длины  $\pi \pi$  -рассеяния  $a_0$  в состоянии с угловым моментом J = 0 и изотопическим спином T = 0.

#### Экспериментальные данные

В области 350-450 Мэв имеется лишь небольшой интервал энергии, для которого к настоящему времени существуют экспериментальные данные по всем пяти каналам реакций однопионного рождения.Сведения об этих каналах представлены в таблице *I*.

| №<br>реакции | Энергия<br>(Мэв) | канал<br>реакции                        | сечение<br>(мб)    | число<br>собы <b>ти</b> й | ссылка |
|--------------|------------------|-----------------------------------------|--------------------|---------------------------|--------|
| 1            | 430              | $\pi^- p \rightarrow \pi^+ \pi^- n$     | 3,84 <u>+</u> 0,16 | 2241                      | /2/    |
| 2            | 447              | $\pi^- p \to \pi^\circ \pi^\circ n$     | 1,90 <u>+</u> 0,25 | 3875                      | /3/    |
| 3            | 430              | $\pi^- p \to \pi^- \pi^\circ p$         | 0,87 <u>+</u> 0,05 | 528                       | /2/    |
| 4            | 450              | $\pi^+ p \rightarrow \pi^+ \pi^\circ p$ | 1,00 <u>+</u> 0,13 | 100                       | /4/    |
| 5            | 450              | $\pi^+p \to \pi^+\pi^+n$                | 0,28 <u>+</u> 0,07 | 28                        | /4/    |
|              |                  |                                         |                    |                           |        |

Таблица /

Для количественного анализа по методу наименьших квадратов помимо полных сечений использовались следующие данные по каждому каналу реакции:

Реакция 1 - распределения по квадратам эффективных масс  $M^2(\pi^{-n})$ ,  $M^2(\pi^{+}\pi^{-})$ ,  $M^2(\pi^{+}n)$  и распределения по углам в с.ц.м.  $\cos \theta_{\pi}^*$ ,  $\cos \theta_{\pi^{-}}^*$ ,  $\cos \theta_{\pi^{+}}^*$ , Реакция 2 - двойные дифференциальные сечения  $\frac{d^2\sigma}{dM_{\pi\pi}d\cos\theta_{\pi}^*}$ . Для сравнения с данными по реакции 1 указанные дифференциальные сечения при энергии 430 Мэв находились путем интерполяции данных при 447 Мэв<sup>/3/</sup> и 417 Мэв<sup>5/</sup>. Реакция 3 - распределения по квадратам эффективных масс  $M^2(\pi^{-p})$ ,  $M^2(\pi^{\circ}p)$ ,  $M^2(\pi^{-}\pi^{\circ})$  и по углам в с.ц.м.  $\cos \theta_{\pi}^*$ ,  $\cos \theta_{\pi}^*$ ,  $\cos \theta_{\pi^{\circ}}^*$ .

Реакция 4 – распределения по кинетическим энергиям  $\pi$  –мезонов, а также по углам в с.ц.м.  $\cos \theta_p^*$ ,  $\cos \theta_{\pi^\circ}^*$ ,  $\cos \theta_{\pi^+}^*$ . Реакция 5 – распределения по углам  $\cos \theta_{\pi^+}^*$  и  $\cos \theta_{\pi^-}^*$ .

Таким образом, при оценке параметров модели использовалась информация о всех пяти каналах реакции  $\pi N \rightarrow \pi \pi N$  в интервале энергий (430-450) Мэв - всего 20 распределений.

### Процедура минимизации

При расчетах пренебрегалось изменением параметров модели при изменении энергии от 430 до 450 Мэв; изменение кинематики при этом учитывалось.

Число искомых параметров модели - 17, число степеней свободы x<sup>2</sup> функционала 152. Начальные значения искомых параметров задавались с помощью генератора случайных чисел; всего было выбрано около 30 начальных приближений. Поиск минимумов функционала проводился

методом линеаризации, описанном в <sup>/6/</sup>. Ввиду неопределенности параметров σ -мезона минимизация проводилась при трех значениях ширины σ -мезона: 150, 300, 400 Мэв. Наименьшие значения χ<sup>2</sup> -функционала были получены при значении ширины σ -мезона 300 Мэв. Поэтому

в дальнейшем приводятся результаты минимизации только при этом значении ширины. Следует отметить, что результаты анализа слабо зависят от ширины σ -мезона. Как и в работах <sup>/2,11/</sup> включение σ -мезона в нашей модели эквивалентно феноменологическому учету роста фазы ππ с энергией.

Всего было получено три решения, основные характеристики которых приведены в таблице *II* . Значения  $\chi^2$  в этих решениях существенно больше, чем теоретически ожидаемые ~ 152. Как известно,  $\chi^2$ должен быть равен ~*n* ( *n* -число степеней свободы) и при больших степенях свободы  $\chi^2$  распределен по Гауссу со стандартным отклонением ~ $\sqrt{2n}$ . Одним из факторов, который может привести к увеличению  $\chi^2$  по сравнению с ожидаемым, является наличие неучтенных систематических ошибок в используемых экспериментальных данных.

В настоящее время невозможно оценить влияние этого фактора из-за отсутствия хотя бы двух групп экспериментальных данных по одному из основных каналов реакций при энергии 430 Мэв со сравнимой статистической точностью. Мы пытались использовать данные Кирца и др.<sup>/9/</sup>по реакции  $\pi - p \rightarrow \pi^+ \pi^- n$  вместо данных Саксона и др.<sup>/2/</sup>. В результате совместного анализа всех пяти каналов реакции (по другим каналам использовались те же самые данные) были получены существенно лучшие значения  $\chi^2$  (~ 1,2 на степень свободы). К сожалению, данные Кирца и др.<sup>/9/</sup> намного менее точны, чем данные Саксона. Поэтому в дальнейшем анализе использовались данные Саксона и др.

Следует отметить, что в настоящей работе удалось получить лучшее по сравнению с имеющимися подобными анализами описание эксперимен-

Таблица II

|           | 8                  |                         | 0,69 <u>+</u><br>10,12                                                  | 0,68 <u>+</u><br>11,0 <u>+</u>                                 | 0,59 <u>+</u><br>11,0 <u>+</u>                                 |
|-----------|--------------------|-------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
|           |                    | NDF                     | <u>286.9</u> =<br>I52<br>I,89                                           | <u>301,7</u> =<br>152<br>1,98                                  | <u>306,5</u> =<br>152<br>2,02                                  |
| Состояния | $\mathcal{J}_{33}$ | 5/m5)<br>√1-22<br>2     | 0,44 <u>+</u> 0,13<br>0,16 <u>+</u> 0,02<br>0,99 <u>+</u> 0,00          | 0,01 <u>+</u> 0,02<br>0,02 <u>+</u> 0,03<br>1,00 <u>+</u> 0,00 | 0,0 <u>+</u> 0,11<br>0,09 <u>+</u> 0,03<br>1,00 <u>+</u> 0,00  |
|           | P31                | -1 1-22<br>-2 1-22<br>2 | 0,21 <u>+</u> 0,04<br>0,15 <u>+</u> 0,02<br>0,99 <u>+</u> 0,00          | 00,0 <u>+</u> 82,0<br>10,0 <u>+</u> 81,0<br>0,98 <u>+</u> 0,00 | 0,25 <u>+</u> 0,04<br>0,17 <u>+</u> 0,01<br>0,99 <u>+</u> 0,00 |
|           | Jef                | 2<br>-1-1-<br>(sml)     | 0,32 <u>+</u> 0,II<br>0, <b>1</b> 9 <u>+</u> 0,03<br>0,98 <u>+</u> 0,0I | 0,68 <u>+</u> 0,04<br>0,28 <u>+</u> 0,00<br>0,96 <u>+</u> 0,00 | 0,55 <u>+</u> 0,10<br>0,25 <u>+</u> 0,02<br>0,97 <u>+</u> 0,01 |
|           | D+3                | 7 1-22<br>2             | 3,41 <u>+</u> 0,28<br>0,43 <u>+</u> 0,02<br>0,90 <u>+</u> 0,01          | 3,12 <u>+</u> 0,40<br>0,42 <u>+</u> 0,03<br>0,91 <u>+</u> 0,01 | 3,61±0,51<br>0,45±0,02<br>0,89±0,01                            |
|           | P13                | 7<br>32-11<br>(sml)     | 0,56 <u>+</u> 0,16.<br>0,18 <u>+</u> 0,03<br>0,98 <u>+</u> 0,01         | 0,18 <u>+</u> 0,16<br>0,10 <u>+</u> 0,05<br>1,00 <u>+</u> 0,01 | 0,50 <u>+</u> 0,16<br>0,17 <u>+</u> 0,03<br>0,99 <u>+</u> 0,01 |
|           | P41                | -1-22<br>2<br>2         | 3,75 <u>+</u> 1,73<br>0,64 <u>+</u> 0,15<br>0,77 <u>+</u> 0,12          | 4,02 <u>+</u> 2,38<br>0,67 <u>+0</u> ,20<br>0,74 <u>+</u> 0,18 | 3,75 <u>+</u> 1,58<br>0,64 <u>+</u> 0,14<br>u,77 <u>+</u> 0,12 |
|           | 311                | 67(mb)<br>√ 7-22<br>2   | 0,81 <u>+</u> 0,27<br>u,30+0,05<br>0,95 <u>+</u> 0,01                   | I,27 <u>+</u> 0,36<br>0,38 <u>+</u> 0,05<br>0,93 <u>+</u> 0,02 | 0,65 <u>+</u> 0,31<br>0,27 <u>+</u> 0,06<br>0,96 <u>+</u> 0,02 |
|           |                    | -                       | І-е<br>реше-<br>ние                                                     | 2-в<br>реше-                                                   | 3-6<br>pese-<br>Hue                                            |

•

тальных данных: значение  $\chi^2$  на степень свободы по пяти каналам реакций в трех решениях находится в пределах от 1,9 до 2,0. Саксон и др. /2/ при одновременном описании только двух каналов реакции  $\pi^- p \rightarrow \pi^+ \pi^- n$ и  $\pi^- p \rightarrow \pi^0 \pi^- p$  получили значение  $\chi^2$  на степень свободы 2,4-2,5. На рис. 1-3 приведены экспериментальные даннные по трем каналам  $\pi^- p \rightarrow \pi \pi N$  в сравнении с результатами 1-го решения. Величина

 $\chi^2$  на степень свободы для канала  $\pi^- p \to \pi^\circ \pi^- p$  равна 1,40, для канала  $\pi^- p \to \pi^+ \pi^- n$  -2,06 и для канала  $\pi^- p \to \pi^\circ \pi^\circ n$  -2,60.

#### Обсуждение результатов

Рассмотрим свойства полученных решений. Значения полных вкладов от рассмотренных в модели состояний представлены в таблице  $II \stackrel{X/}{.}$ Для всех решений вклады состояний с изотопическим спином  $T = \frac{1}{2}$  намного больше, чем вклады состояний с T = 3/2. Это не означает, однако, что состояния с T = 3/2 можно не учитывать для описания всех  $\pi^- p \rightarrow \pi \pi N$  каналов. Так, например, включение  $P_{31}$  оказалось существенным для описания канала  $\pi^- p \rightarrow \pi^\circ \pi^\circ \pi$ .

В всех решениях главным по величине парциальных вкладов являются  $P_{11}$  и  $D_{13}$  состояния, причем величины  $\sqrt{1 - \eta^2}$  во всех этих решениях больше в  $P_{11}$  состоянии, чем соответствующие величины в  $D_{13}$  состоянии. Что касается других состояний, то в разных решениях наблюдается заметное отличие вкладов в состояниях с T=3/2 : в  $D_{33}$ и  $S_{31}$  состояниях.

х/Следует отметить, что приведенные ошибки рассчитаны только с учетом диагональных членов матрицы ошибок. Это приводит к искажению ошибок, в особенности при наличии сильных корреляций. В частности, это приводит к существенному завышению ошибок для парциальных вкладов P<sub>11</sub> состояния из-за сильной деструктивной интерференции фона и σ -мезона.



Рис. 1. Распределения по квадратам эффективных масс в реакциях  $\pi^- p \rightarrow \pi^+ \pi^- n$  и  $\pi^- p \rightarrow \pi^- \pi^\circ p$ .

Сплошная кривая - модель.



Рис. π – p ₽. ŧ  $\pi^{+}\pi^{-}n$ Угловые распределения в системе центра масс  $\mu$   $\pi^- p \rightarrow \pi^- \pi^0 p$ . реакций

Сплошная кривая - модель.



Рис. 3. Спектр масс  $M(\pi^{\circ}\pi^{\circ})$  реакции  $\pi^{-}p \rightarrow \pi^{\circ}\pi^{\circ}n_{\bullet}$ . Сплошная кривая-модель.

Для иллюстрации вкладов различных состояний на рис. 4 приведены величины  $\sqrt{l-\eta^2}$ , соответствующие 1-му решению в сравнении с результатами фазовых анализов упругого  $\pi N_{-}$  рассеяния, проведенных в ЦЕРН'е и Сакле

В состояниях  $P_{11}$ ,  $D_{13}$  наши результаты не противоречат обо им фазовым анализам. В  $S_{11}$ ,  $P_{13}$ ,  $P_{31}$ ,  $D_{33}$  состояниях наши результаты противоречат тем фазовым анализам (либо ЦЕРН, либо Сакле), которые в районе 430 Мэв дают нулевые значения  $\sqrt{1 - \eta^2}$ . Таким образом, фазовые анализы упругого  $\pi N$  – рассеяния малочувствите ны к состояниям с малым сечением и по этой причине носят качественны характер.

На рис. 5 результаты настоящей работы сравниваются с результата ми парциально-волновых анализов /2,11,12/, два из которых /2,11/ рассматривают каналы  $\pi^- p \rightarrow \pi^+ \pi^- n$ ,  $\pi^- p \rightarrow \pi^- \pi^\circ p$ , а в третьем /12 анализируются каналы  $\pi^+ p \rightarrow \pi^+ \pi^\circ p$  и  $\pi^+ p \rightarrow \pi^+ \pi^+ n$ .

Результаты нашего анализа согласуются с результатами Саксона и др.<sup>/2/</sup> и противоречат результатам Де Бира и др.<sup>/11/</sup> в D -состояниях, а именно: в  $D_{13}$  волне наши точки находятся выше точек из анализ за Де Бира и др., а в  $D_{33}$  существенно ниже их. Что касается результатов Баулера и Кэшмора<sup>/12/</sup>, проводивших анализ  $\pi^+ p \rightarrow \{ \begin{array}{c} \pi^+ \pi^\circ p \\ \pi^+ \pi^+ p \end{array} \}$ каналов в интервале энергий 470-550 Мэв, то наши результаты находятс в согласии с ними. Отметим, что в T=3/2 волнах нет выделенного по величине сечений состояния и состояния  $S_{31}$  и  $P_{31}$  сравнимы с  $D_{33}$ . Поэтому пренебрежение<sup>/2,11/</sup> состояниями  $S_{31}$  и  $P_{31}$ по сравнению с  $D_{33}$  не оправдано.

В таблице *III* приведены величины сечений распада состояний *P*<sub>11</sub> *P*<sub>13</sub> и *D*<sub>13</sub>. Следует отметить следующие характерные особеннос: распада указанных состояний по различным каналам:



Рис. 4. Зависимость  $\sqrt{1 - \eta^2}$  от энергии для различных фазовых анализов упругого  $\pi N$  – рассеяния.  $\Delta$  – CERN EXPERIMENTAL — SACLAY, • – настоящая работа. Ось абсцисс – кинетическая энергия первичного  $\pi$  –мезона Мэв; ось ординат  $\sqrt{1 - \eta^2}$ .



## Таблица ///

| Состоян <b>ие</b> | Вклады<br>различных чле-<br>нов<br>(мб) | І-е<br>решение | 2-ое<br>решение | 3-е<br>решение   |
|-------------------|-----------------------------------------|----------------|-----------------|------------------|
|                   | неизобарный<br>член                     | 2,65           | 0,74            | I,50             |
| PII -             | ⊿ <sub>1236</sub> -<br>резонанс         | U <b>,</b> 54  | I,5I            | 0,82             |
|                   | треугольный<br>график                   | 0,12           | 0,32            | 0,13             |
| Д <sub>13</sub>   | ∆ 1236-<br>резонанс                     | 3,82           | 3,50            | 4,04             |
|                   | треугольный<br>график                   | 0,38           | 0 <b>,</b> 34   | 0,3 <del>0</del> |
| ۲.                | ∆ 1236 <sup>-</sup><br>резонанс         | 0,59           | 0,19            | 0,53             |
| -13               | треугольный<br>график                   | 0,03           | 0,01            | 0,02             |

ţ

-

 В P<sub>11</sub>-состоянии существенный вклад вносит неизобарный канал; так как энергия *п N* -системы в системе центра масс (1403 Мэв)
близка к резонансному значению энергии в P<sub>11</sub>-состоянии (1470 Мэв,
Г =165 Мэв), то этот факт представляет интерес для выяснения относительных вероятностей распада P<sub>1</sub>, - резонанса.

2) В D<sub>13</sub>-состоянии рождение изобары в S -состоянии намного больше, чем в P<sub>11</sub>-состоянии ( P -рождение изобары).

3) Треугольный график вносит наибольший вклад в  $D_{13}$ -состоянии. В ряде работ 7-97 наблюдалось превышение над фазовой кривой в области больших масс спектра  $\pi^+\pi^-$ -системы от реакции  $\pi^- p \rightarrow \pi^+\pi^- n$ вблизи порога образования  $\Delta_{1236}$  -резонанса. В нашей модели этот эффект объясняется совокупностью многих факторов: неизобарными членами в  $P_{11}$  (фон и  $\sigma$  -мезон), интерференцией неизобарного члена с изобарным в  $P_{11}$ , а также интерференцией треугольной диаграммы с изобарными и неизобарными членами в  $P_{11}$  и  $D_{13}$  - волнах. На рис. 6 приведены вклады различных членов в спектре  $M^2(\pi^+\pi^-)$ , соответствующие первому решению.

В рамках нашей модели удалось описать все пять каналов реакций  $\pi N \rightarrow \pi \pi N$  путем введения помимо  $\Delta_{1236}$  – резонанса  $\pi \pi$  – взаимодействия в  $P_{11}$ ,  $S_{11}$  – состояниях ( $\sigma$  –мезон) и учета треугольного графика в  $P_{11}$ ,  $D_{13}$ , и  $P_{13}$  – состояниях. Для выяснения вопроса о необходимости введения треугольного графика нами был проведен анализ экспериментальных данных без включения в модель треугольного графика (т.е.  $a_0$  =0); при этом число параметров модели уменьшилось на единицу.

Согласие с экспериментальными данными существенно ухудшалось: так, например,  $\chi^2$  для 1-го решения возрастал на 51 единицу для второго – на 36 и для 3-го – на 28. Согласно критерию Фишера<sup>/13/</sup>, можно утверждать, что если при увеличении числа параметров на единицу про-



Рис. 6. Вклады различных членов в спектр масс  $M^2(\pi^+\pi^-)$  реакции  $\pi^- p \rightarrow \pi^+\pi^- n$ . **Х** -неизобарный член  $P_{11}$ , **О** -изобарный член  $P_{11}$ , **О** -изобарный и неизобарным членом в  $P_{11}$ , **О** -изобарный член в  $D_{13}$ , **●** -интерференция треугольного графика с изобарным членом в  $D_{13}$ , **●** -инс -интерференция изобарного и неизобарного членов в  $P_{11}$ , **Х** -вклад  $S_{11}$  состояния.

изошло уменьшение  $\chi^2$  на  $\Delta\chi^2$ , то вероятность ошибки первого рода при отбрасывании решения с меньшим числом параметров есть

 $a < P(\chi_{I}^{2} > \Delta \chi^{2}),$ 

где  $\chi_1^2$  есть  $\chi^2$  с одной степенью свободы.В нашем случае для всех 3-х решений a < 0,01%. Таким образом для описания всех пяти каналов в рамках нашей модели включение треугольного графика необходимо. При этом примечательно, что в данной модели, несмотря на несколько решений, длира  $\pi\pi$  -рассеяния во всех решениях совпадает, что позволяет определить знак и величину длины рассеяния  $a_0 = (0,65\pm0,16)\lambda_{\pi}$ . Следует заметить, что амплитуда  $\pi\pi$  -рассеяния в данном варианте модели определена как константа; однако можно ввести более полное выражение амплитуды с учетом членов типа эффективного радиуса.

В работе Х.Шмита<sup>/14/</sup> было приведено уравнение, из которого следовало, что треугольный график не влияет на массовый спектр  $\pi\pi$ -Системы. Однако, как показано Б.Валуевым<sup>/15/</sup>, полученный Шмитом результат является следствием использования неполного выражения для амплитуды треугольного графика.

Проведенный нами анализ показывает, что в данном варианте модели для описания всех каналов реакций  $\pi N \to \pi \pi N$  или, по крайней мере  $\pi^+ \pi^- n$ 

трех каналов  $\pi - p \rightarrow \{\pi^{\circ} \pi^{\circ} n$ , необходимо введение треугольно- $\pi \pi^{\circ} p$ 

го графика, что позволяет определить знак и величину длины  $\pi\pi_-$  рассеяния  $a_0$ .

Для уточнения полученных результатов желательно провести совмест ный анализ всех каналов реакций при меньших эначениях энергий в интервале 350-400 Мэв.

В заключение авторы благодарят В.В.Анисовича и Б.Н.Валуева за многочисленные полезные обсуждения и советы.

- 1. С.А.Бунятов, В.С.Курбатов, А.К. Лиходед. Препринт ОИЯИ, Р1-6521, Дубна, 1972.
- 2. D.H.Saxon, J.H.Mulvey, W.Chinowsky. Phys.Rev., <u>2D</u>, 1790 (1970).
- В.Дайнет, Г.Мюллер, Д.Шмитт, Г.М. Штауденмайер, С.А.Бунятов, В.С.Курбатов, Э.Заваттини. ОИЯИ, Р1-5781, Дубна, 1971.
- 4. C.P.Poirrier et al. Phys.Rev., <u>143</u>, 1092 (1966).
- B.S.Barish, R.J.Kurz, V.Perez-Mendez, J.Solomon. Phys.Rev., <u>135B</u>, 416 (1964).
- 6. С.Н.Соколов, И.Н.Силин. Препринт ОИЯИ, Д-810, Дубна, 1961.
- 7. Ю.А.Батусов, С.А.Бунятов, В.М.Сидоров, В.А.Ярба. ЖЭТФ, <u>40</u>, 460, 1961.
- 8. Т.Д.Блохинцева. В.Г.Гребинник, В.А.Жуков, Г.Либман, Л.Л.Неменов, Г.И.Селиванов, Юань Жун-фан. ЖЭТФ, <u>44</u>, 116, 1963.
- J.Kirz, J.Schwartz and R.D.Tripp. Phys. Rev., <u>130</u>, 2481 (1963).
- 10. D.J.Herndon, A.Barbaro-Galtteri, A.H.Rosenfeld. UCRL-20030 (1970).
- M. de Beer, B.Deler, J.Dolbeau, M.Neveu, Nguyen Thuc Diem, G.Smadja, G.Valladas.Nucl.Phys., <u>B12</u>, 599 (1969).
- M.G.Bowler, R.J.Cashmore. Nucl. Phys., <u>B17</u>, 331 (1970).
- 13. И.Н.Силин. Международная школа по физике высоких энергий, Попрадске Плесо, ЧССР, 1967.
- 14. Ch.Schmitt. Phys. Rev., <u>154</u>, 1363 (1967).
- 15. Б.Н.Валуев. Международная школа по физики элементарных частиц. Герцег-Нови, Югославия, 1969.

Рукопись поступила в издательский отдел 23 июня 1972 г.