

P1 - 6521

4/12-

С.А.Бунятов, В.С.Курбатов, А.К.Лиходед

ПАРЦИАЛЬНО-ВОЛНОВОЙ АНАЛИЗ РЕАКЦИЙ П N — ПП N ВБЛИЗИ ПОРОГА ОБРАЗОВАНИЯ Δ 1236 -РЕЗОНАНСА С УЧЕТОМ ВКЛАДА ТРЕУГОЛЬНОГО ГРАФИКА

Часть І. Описание модели

1972

XIGNES

P1 - 6521

С.А.Бунятов, В.С.Курбатов, А.К.Лиходед*

ПАРЦИАЛЬНО-ВОЛНОВОЙ АНАЛИЗ РЕАКЦИЙ П N - ПП N ВБЛИЗИ ПОРОГА ОБРАЗОВАНИЯ С УЧЕТОМ ВКЛАДА ТРЕУГОЛЬНОГО ГРАФИКА

Часть І. Описание модели

Направлено в ЯФ

1. В ведение

Настоящая работа является дальнейшим развитием работы $^{/1/}$, в которой была предпринята попытка оценить длину $\pi\pi$ -рассеяния путем выделения вклада треугольного графика $^{/2/}$, используя парциальноволновой анализ реакций $\pi N \rightarrow \pi\pi N$ в интервале энергий 350-600 Мэв. В отличие от работы $^{/1/}$ мы не используем результатов фазовых анализов упругого πN -рассеяния с присущими им неопределенностями и не делаем никаких предположений относительно характера зависимости параметров модели от энергии. Данный анализ отличается от всех предшествующих следующими характерными особенностями: 1) впервые проводится анализ полных и дифференциальных сечений всех пяти каналов реакций $\pi^{\pm}p \rightarrow \pi\pi N$ одновременно (обычно используют дифференциальные сечения одного или двух каналов); 2) учитываются как резонансные (Δ_{1236} и σ -мезон), так и нерезонансные (фоновые) πN - и $\pi\pi$ -взаимодействия в конечном состоянии; 3) учитывается вклад треугольного графика.

<u>Парциально-волновой анализ реакций πN → ππN</u>

Известно, что амплитуду упругого процесса (2 →2) можно разложить в ряд по парциальным волнам. При этом парциально-волновая амплитуда зависит только от одной переменной - полной энергии.

Аналогичная амплитуда для процессов $(2 \rightarrow 3)$ зависит от трех переменных: например, от полной энергии W и парных энергий частиц $M_{\pi\pi}$ и $M_{\pi N}$ Это обстоятельство существенно усложняет анализ и приводит к необходимости привлечения модельных представлений. В модельно-независимом виде дифференциальное сечение процесса $\pi N \rightarrow \pi\pi N$ имеет вид $^{/3/}$:

$$\frac{d^{\prime} \sigma}{d\Omega dM_{\pi\pi} dM_{\pi N}} = \sum_{L,M} C_{L,M} (M_{\pi\pi}, M_{\pi N}) Y_{L}^{M} (\theta, \phi),$$

 $C_{L,M}(M_{\pi\pi}, M_{\pi N})$ - коэффициенты разложения дифференциального сечения по шаровым функциям, θ и ϕ - углы, определяющие направление первичного π -мезона относительно плоскости образования трех частиц в с.ц.и. Оценка коэффициентов $C_{L,M}$ позволяет определить максимальный угловой момент состояний, которые необходимо ввести при данной энергии, независимо от каких-либо динамических предположений. Однако для того чтобы получить более детальную информацию, необходимо сделать модельные предположения о структуре 3-частичных конечных состояний; обычно предполагается квазидвухчастичная модель, которая учитывает состояния с наиболее сильным парным взаимодей-ствием частиц в конечном состоянии (например, Δ_{1236} -резонанс). Такое взаимодействие описывается диаграммами типа приведенных на рис. 1.

Впервые учет образования Δ_{1236} -изобары в реакциях $\pi N \rightarrow \pi \pi N$ в очень грубом приближении был проведен Линденбаумом и Штейнхаймером^{/4/} и соответствующая модель получила название "изобарной" модели. В дальнейшем эта модель была существенно развита в работах Олсона и Йодха^{/5/}, где учитывались как резонансное, так и нерезонансное рождение и взаимодействие в πN -системе в конечном состоянии. Эта модель удовлетворительно описывала энергетическую зависимость полных сечений, а также спектры эффективных масс πN ,

но плохо описывала спектры $\pi^+\pi^-$ В работах Деллера и Валадаса ^{/6/} и Намызловского и др. развита релятивистская форма записи матричного элемента, основанная на представлении Вика для амплитуды трехчастичного процесса. По нашим оценкам поправки, связанные с релятивизмом при не очень больших энергиях ≈450Мэв, незначительны (2-3%) и поэтому вполне допустимо нерелятивистское представление матричного элемента процесса $\pi N o \pi \pi N$, более привлекательное простотой записи. Необходимость использовать разложение только по одному из полных наборов, как это предлагается в _ не представляется принципиальной. Напротив, наличие резонансного взаимодействия в любой из пар (в $\pi N - \Delta_{1236}$ и в $\pi \pi - \sigma$ -мезон) указывает на равноправность всех трех систем. К настоящему времени выполнены шесть парциально-волновых анализов при близких энергиях /3,9-413/ В анализах^{/3,9,11/} использовался формализм модели Деллера-Валадаса, в парциально-волновом анализе использовался формализм модели Олсона-Йодха, а в анализах – формализм модели Намызловского. Настоящая модель представляет собой существенное развитие модели Анисоича и др. , в которой впервые учитывалось влияние треугольного графика. Основные этапы развития изобарной модели отражены в таблице / .

Выбор начальных и конечных состояний

На рис. 1 схематически показаны диаграммы, которые учитывались в данном анализе. Различные модели отличаются, в основном, рассмотрением различных начальных состояний системы πN , различных конечных состояний $\pi\pi N$ и параметризацией двухчастичных амплитуд. В нашем анализе мы ограничивались S-, P-и D-волнами ($L \leq 2$). Такое ограничение согласуется со всеми фазовыми анализами упругого πN -рассеяния: коэффициенты неупругости в более высоких состояниях при энергии 430 Мэв по всем фазовым анализам пренебрежимо малы.

Авторы	Учет конечн в коне	ых состояний мнеотосо монг	и взанмодействий ии	Квантовые состояния ^{х/}
Олсон и Йодх (1966 г.)	Резонансн. _π N -взаи- модейств. Δ ₁₂₃₆	Нерезон. πN рожд. и взаимод.		P_{11} , D_{13} P_{31} , D_{33}
Делер и Валадас (1966) Де Бир и др. (1969)	Резонансн. π N _взан- действ. Δ 12 36	-	Резонансн. $\pi\pi$ -взаим. $M \approx (600-800)$ $\int_{\sigma}^{\sigma} \approx (200-400)$	P_{11}, D_{13} $S_{11}, P_{13}, S_{31}, D_{33}, D_{33}$
Анисович и др. (1968)	Резонанся. <i>п N -</i> взаим. Δ ₁₂₃₆	Нерезон. <i>п пN</i> рожден.	-	Треуг. Р ₁₁ , D ₁₃ граф. D, Р 33, 31
Настоящая работа (1972)	Резонанси. π N -взаим. Δ ₁₂₃₆	Нерезон. <i>ππΝ</i> рожден.	Резонан. <i>п п</i> -взаим. (<i>M_σ</i> = 750 Мэв) (Г _σ = 300 Мэв)	Tpeyr. P_{11} , D_{13} rpa ϕ . P_{13} , S_{11} S_{31} , D_{33} P_{31}

Таблица 1

х/ Здесь и в дальнейшем используются обозначения L_{(2T)(2J)}, где L орбитальный момент начального состояния, T – изотопический спин, J –полный момент.

~1

Рис. 1. Диаграммы, которые учитывались в данной модели, 1 – резонансное πN –взаимодействие в конечном P –состоянии (изобарная диаграмма); состояния PP_{11} , PP_{31} , DS_{31} , DS_{33} . II-резонансное $\pi \pi$ –взаимодействие в конечном S –состоянии; состояния SP_{11} , PS_{11} III –нерезонансное рождение трех частиц в S –состоянии (фон) и ($\pi \pi$)-системы в P –состоянии; состояния P11, P31, S31. IV –изобарная диаграмма перерассеянием пионов (треугольная диаграмма); состояния PP_{11} , PP_{31} , DS_{31} . Для всех волн мы ограничивались рассмотрением состояний с полным угловым моментом $J \leq 3/2$, что следует из модельно-независимого анализа угловых распределений вторичных частиц в реакциях $\pi N \to \pi \pi N / 9/$ и также находится в согласии с фазовыми анализами.

В конечном состоянии кроме Δ_{1236} -резонанса в πN системе учитывалось резонансное $\pi \pi$ -взаимодействие в S-состоянии (так называемый σ -мезон с параметрами M_{σ} = 750 Мэв, Γ_{σ} = 150 + 4 400 Мэв). Указание на существование сильного $\pi \pi$ - взаимодействия в S-состоянии примерно с такими параметрами получено в работе Дайнета и др. $^{/14/}$. Помимо этого на начальном этапе учитывался также вклад от ρ -мезона. Однако включение ρ -мезона в состояниях S_{11} , P_{11} и D_{13} не дало существенных улучшений при описании экспериментальных данных, что указывает на пренебрежимо малый вклад последнего в этих состояниях при энергии 430 Мэв. В дальнейший анализ ρ -мезон не включался, однако в состоянии S_{31} введено S- волновое рождение $\pi \pi$ - системы в P-состоянии. Вклад треугольного графика учитывался в состояниях P_{11} , P_{13} и D_{13} . В таблице II перечислены конечные состояния системы $\pi \pi N$ для всех парциальных волн.

IV. Основные формулы

Реакция типа 2 \rightarrow 3, как известно, зависит от пяти независимых переменных. В качестве первых двух в реакции $\pi N \rightarrow \pi_1 \pi_2 N_3$ будем выбирать любые две из трех переменных s_{12} , s_{13} , s_{23} , где s_{ij} имеют смысл квадрата полной энергии пары частиц в их цент-ре масс. s_{ij} связаны линейным соотношением

$$s_{12} + s_{13} + s_{23} = m_1^2 + m_2^2 + m_3^2 + s$$
 (1)

Начально состояни πр	e e	Конечные состояния	
S ₁₁	р -рождение <i>о</i>	_	_
	S -рождение _σ		
P ₁₁	S-рождение ππΝ _В S- состоянии	Р-рождение ∆ 1236	Треугольный график
P ₁₃	-	Р-рождение Δ ₁₂₃₆	Треугольный график
D ₁₃		S -рождение Δ ₁₂₃₆	Треугольный график
S 31	S -рождение ππ -системы в P -состоянии	-	-
P ₃₁	S -рождение <i>п п N</i> в	-	-
D ₃₃		S -рождение Δ ₁₂₃₆	-

Здесь m_i -массы, а ^s -квадрат полной энергии всех трех частиц в их центре масс, который примем за третью независимую переменную. Оставшиеся две переменные будем выбирать из трех косинусов (z_1 , z_2 , z_3) углов вылета частиц относительно направления налетающего пиона, импульс которого мы обозначаем через \vec{k} .

В системе центра масс трех частиц существует соотношение, связывающее косинусы углов

$$k_1 z_1 + k_2 z_2 + k_3 z_3 = 0.$$

(2)

(5a)

 k_{1} , k_{2} , k_{3} -абсолютные эначения импульсов частиц, причем, $k_{i}^{2} = k_{i0}^{2} - m^{2}$ и $i \neq j \neq k$ $k_{i0} = (s - s_{jk} + m_{i}^{2})/(2\sqrt{s})(i, j, k = 1, 2, 3).$ (3)

Физическая область реакции $\pi N \rightarrow \pi_1 \pi_2 N$ в выбранных переменных определяется условием

$$Q(z_1, z_2, z_{12}) = 1 - z_1^2 - z_2^2 - z_{12}^2 + 2z_1^2 z_{12}^2 \ge 0$$

 $(z_{12} - \kappa o c u h y c y r л a между направлениями импульсов <math>k_1 u k_2$), а также границами графика Далица в плоскости переменных s_{12} и s_{13}

$$s \frac{max}{12} = 2 + (s - 1 - s_{13})(s_{13} + 1 - M^{2})/2s_{13} + \frac{(s - 1 - s_{13})^{2}}{4s_{13}} - 1][\frac{(s_{13} + 1 - M^{2})^{2}}{4s_{13}} - 1]]\frac{y_{2}}{4s_{13}}.$$
(56)

$$s_{12}^{\min} = 2 + (s - 1 - s_{13})(s_{13} + 1 - M_{-})/2s_{13} - \frac{1}{12} - 2\left\{ \left[\frac{(s - 1 - s_{13})^2}{4s_{13}} - 1 \right] \left[\frac{(s_{13} + 1 - M_{-}^2)^2}{4s_{13}} - 1 \right] \right\}^{\frac{1}{2}}$$

$$(M + 1)^2 < s_{13} < (W - 1)^2 \qquad W = \sqrt{s}.$$

Здесь и далее будем считать, что $m_{\pi}^2 = 1$, $m_N^2 = M^2$. Выражение для дифференциального сечения процесса $\pi N \rightarrow \pi \pi N$ имеет следующий вид:

$$d\sigma = \frac{1}{2s\sqrt{(s+1-M^2)^2} 4s} /A/^2 \frac{1}{4\pi} \frac{dz_1 dz_2 ds_{12} ds_{13}}{\sqrt{Q(z_1, z_2, z_{12})}}.$$

 $|A|^2 = |\sum_{e} A_e|^2$ - квадрат матричного элемента, усредненный по начальным поляризациям нуклона и просуммированный по конечным поляризациям. A_e в наших обозначениях соответствует вкладу состояний, указанных в таблице *II*. *S* - рождению изобары Δ_{1236} из D_{j3} состояний (j = 2T, где T -изотопический спин, $T = \frac{1}{2}$, $\frac{3}{2}$) соответствует матричный элемент следующего вида x/z:

$$A_{D_{j3}}^{\Delta} = G_{D_{j3}}^{\Delta} \{ [k^{2}(\sigma k_{a3}) - 3(\sigma k)(k k_{a3})] \frac{1}{s_{a3} - l_{\Delta}^{2}} \}$$

$$I_{\Delta}^{2} = M_{\Delta}^{2} - i\Gamma_{\Delta} \qquad a = 1,2$$

$$M_{\Delta} = 8,8 - \text{масса изобары, } \Gamma_{\Delta} - \text{ширина изобары и } \Gamma_{\Delta} =$$

$$= \Gamma_{0} M_{\Delta} \frac{q_{\pi N}^{3}}{q_{0}^{3}}, \Gamma_{0} M_{\Delta} = 7,5, q_{\pi N} \text{ импульс } \pi - \text{мезона, связанно-}$$
го в изобару в системе покоя изобары, $q_{0} = 1,8; G_{D_{j3}}^{\Delta} - \text{константа}$
для каждого изотопического состояния. P_{11} -состояние описывается двумя матричными элементами, соответствующими S -рождению σ - мезона

$$A \sigma = G \sigma \quad (\vec{k} \sigma) \frac{\Gamma_{\sigma}}{s_{12} - l_{\sigma}^2} ,$$

$$M_{\sigma} = 5,3 - \text{Macca} \quad \sigma - \text{MesoHa},$$

$$\Gamma_{\sigma} = \Gamma_1 M_{\sigma} \frac{q_{\pi\pi}}{q_1} ,$$

х/ Здесь и далее опущен соответствующий изотопический множитель Клебша-Гордона, зависящий от того, какой пион связан с нуклоном в изобару. Г₁ варьировалась и была равной 1,07; 2,14; 2,85 (соответственно 150, 300 и 400 Мэв). $q_{\pi\pi}$ – импульс π –мезона в системе покоя σ –мезона. q_1 = 2,5 и P –рождению Δ_{1236} :

$$A_{P_{11}}^{\Delta} = G_{P_{11}}^{\Delta} (\vec{\sigma} \, \vec{k}) \{ 2 (\vec{k}_{a3} \, \vec{k}_{\beta}) - i \, \vec{\sigma} [\vec{k}_{a3} \, \vec{k}_{\beta}] \} \frac{1}{s_{a3} - l \, \Delta}$$

$$(a, \beta = l, 2; a \neq \beta).$$

Кроме того в *Р₁₁* состоянии учитывалось *S* -рождение в конечном состоянии всех трех частиц

$$A \stackrel{S}{P} = G \stackrel{S}{P} \stackrel{\rightarrow}{(\sigma k)},$$

Р₁₃-состояние описывается Р -рождением изобары. Соответствующая амплитуда имеет вид:

$$\begin{array}{l}
A_{P_{13}} = G_{P_{13}} \{-i5\vec{k} [\vec{k}_{a3} \vec{k}_{\beta}] - \vec{\sigma}\vec{k} (\vec{k}_{\beta}\vec{k}_{a3}) - (\vec{\sigma}\vec{k}_{a3}) (\vec{k}_{\beta}\vec{k}_{\beta}) + \\
+ 4(\vec{\sigma}\vec{k}_{\beta})(\vec{k}_{a3}\vec{k}) \} \frac{1}{s_{a3} - l_{\Delta}^{2}} \\
a = l_{2} \qquad a \neq \beta, \\
\beta = l_{2}
\end{array}$$

 P_{31} - состояние описывается S -рождением $\pi \pi N$ - системы в S - состоянии

$$A_{P_{31}} = G_{P_{31}}(\sigma k).$$

$$S_{11} = \operatorname{состояние} \text{ описывается } P = \operatorname{рождением} \sigma = \operatorname{мезона}$$

$$A \overset{\sigma}{_{s_{11}}} = G \overset{\sigma}{_{s_{11}}} (\vec{k}_{3} \vec{\sigma}) \Gamma_{\sigma} / (s_{12} - l_{\sigma}^{2}).$$

$$S_{31} = S \quad \text{рождением} \ \pi \ \pi \quad \text{-системы} \ \text{в} \quad P \quad \text{-состоянии}$$

$$A \overset{\pi \pi}{_{s_{31}}} = G \overset{\pi \pi}{_{s_{31}}} (\vec{k}_{12} \vec{\sigma})$$
относительные импульсы частиц 1,3; 2,3; 1,2 в их системе центра масс:

$$\vec{k}_{13} = \vec{k}_{1} + \kappa_{1} \vec{k}_{2}; \quad \vec{k}_{23} = \vec{k}_{2} + \kappa_{2} \vec{k}_{1}; \quad \vec{k}_{12} = \vec{k}_{1} + \kappa_{3} \vec{k}_{3}.$$

Здесъ

$$\kappa_{1} = \frac{s + 1 - s_{23} + \frac{1}{2} \sqrt{\frac{s}{s_{13}} (s_{13} + 1 - M^{2})}}{(\sqrt{s} + \sqrt{s_{23}})^{2} - 1}$$

$$\kappa_{2} = \frac{s + 1 - s_{13} + \frac{1}{2} \sqrt{\frac{s}{s_{23}} (s_{13} + 1 - M^{2})}}{(\sqrt{s} + \sqrt{s_{13}})^{2} - 1}$$

$$s + 1 - s_{23} + \sqrt{s_{12} \cdot s}$$

$$\kappa_{3} = \frac{1}{(\sqrt{s} + \sqrt{s_{12}})^{2} - M^{2}}$$

Вклад в амплитуду членов с логарифмической особенностью обсуждался ранее в работе ^{/1/} и мы проводим окончательный результат без подробного вывода.

Вклад в D₁₃ - волновую часть амплитуды имеет следующий вид:

$$T_{D}(12) = G_{D_{13}}^{\Delta} \left[k^{2}(\vec{\sigma}\vec{k}_{3}) - 3(\vec{\sigma}\vec{k})(\vec{k}\vec{k}_{3})\right] i a_{0}h_{D} \cdot \left[ln \frac{a + \sqrt{s_{12} - 4}}{|a|} + J\right] / 2\beta$$

Вклад в P_{11} -волновую часть: $T_{P_{11}}(12) = G \frac{\Delta}{P_{11}} (\vec{\sigma} \vec{k}) i a_0 h_p [ln - \frac{a + \sqrt{s_{12} - 4}}{|a|} + J] / 2\beta$ и в P_{13} волну: $T_{P_{13}}(12) = G \frac{\Delta}{P_{13}} [3(\vec{\sigma} \vec{k}_3)(\vec{k}_3 \vec{k}) - (\vec{\sigma} \vec{k})k_3^2] i a_0$. $\cdot h_p [ln - \frac{a + \sqrt{s_{12} - 4}}{|a|} + J] \frac{1}{2\beta} \frac{M + 2}{4M(W - M - 2)}$

Здесь а₀ -длина п п -рассеяния. Величина *I*, вычислена в работе /1/:

$$\hat{\alpha}\beta = \frac{s+M^2-1}{2} - I_{\Delta}^2; \beta = \frac{1}{4}\sqrt{[(W+M)^2-4][(W-M)^2-4]}$$

$$h_{p} = \frac{2M(W-M-2)}{M+1} + \frac{\alpha}{M+1} \sqrt{\frac{4M(W-M-2)}{M+2}}$$

$$h_{D} = - \frac{M+2}{2(M+1)} + \frac{M\alpha}{4(M+1)} \sqrt{\frac{M+2}{M(W-M-2)}},$$

где $V^2 = s$. Таким образом, модель в описанном варианте содержит 17 неизвестных параметров (12 параметров для описания состояний с изотопическим спином $T = \frac{1}{2}$ и 5 параметров с $T = \frac{3}{2}$), из них девять – модули вершин амплитуд переходов в рассмотренных состояниях, семь – фазы, соответствующие этим амплитудам, и один – длина $\pi \pi$ -рассеяния a_0 .

Литература

- 1. В.В. Анисович, Е.М. Левин, А.К. Лиходед, Ю.Г. Строганов. ЯФ, <u>8</u>, 583 (1968).
- В.В. Анисович, Л.Г. Дахно. ЖЭТФ, <u>46</u>, 1152 (1964);
 Б.Н. Валуев. ЖЭТФ, <u>47</u>, 649 (1964).
- 3.M.De Beer, D. Deler, J.Dolbeau, M.Neveu, Nguyen Thuc Diem, G.Smadja, G.Valladas. Nucl.Phys., <u>B12</u>, 599 (1969).
- 4.R.M.Sternheimer, S.J.Lindenbaum. Phys.Rev., <u>109</u>, 1723 (1958).
- 5.M.Olsson, G.B.Yodth. Phys.Rev., <u>145</u>, 1309 (1966).
- 6.B. Deler, G.Valladas. Nuovo Cim., <u>45</u>, 559 (1966).
- 7.J.M. Namyslowski, M.S. Razmi, R.G. Roberts. Phys. Rev., <u>157</u>, 1328 (1967).
- 8. G. Wick. Ann. Phys., <u>18</u>, 65 (1962).
- 9.D.H. Saxon, J.H.Mulvey, W.Chinowsky. Phys.Rev., <u>2D</u>, 1790 (1970).
- 10.J.C. Botke. Nucl Phys., <u>B23</u>, 253 (1970).
- 11.M.G. Bowler, R.J.Cashmore. Nucl. Phys., <u>B17</u>, 331 (1970).
- 12. А.В. Кравцов. ЯФ, 12, 1068 (1970).
- 13. М.М. Макаров, Н.С. Гасилова, В.В. Нелюбин, В.В. Саранцев, Л.Н. Ткач. ЯФ, <u>13</u>, 891 (1971).

 W. Deinet, A. Menzione, H. Muller, H.M.Staudenmaier, B. Bunyatov, D. Schmitt. Phys. Lett., <u>30B</u>, 359 (1969).

> Рукопись поступила в издательский отдел 15 июня 1972 года.