2"/11-72 F-859 объединенный институт **ЯДЕРНЫХ** ИССЛЕДОВАНИЙ Дубна: 6461 2504 P.1

В.Г.Гришин, Ш.В.Иногамов, Б.С.Юлдашев, Г.Янчо

ЗАМЕЧАНИЕ О СИММЕТРИИ СПЕКТРА ПРОДОЛЬНЫХ ИМПУЛЬСОВ ПИОНОВ В ПОЛУИНКЛЮЗИВНЫХ П⁻р ВЗАИМОДЕЙСТВИЯХ ПРИ **р= 4** Гэв/с

1972

BU(OKMX)HEPT

адбораторня Вностроня

P1 6461

В.Г.Гришин, Ш.В.Иногамов, Б.С.Юлдашев, Г.Янчо

ЗАМЕЧАНИЕ О СИММЕТРИИ СПЕКТРА ПРОДОЛЬНЫХ ИМПУЛЬСОВ ПИОНОВ В ПОЛУИНКЛЮЗИВНЫХ (П¹⁻)р ВЗАИМОДЕЙСТВИЯХ ПРИ **р= 4** Гэв/с

Направлено в ЯФ

Анализ распределений продольных импульсов *п* -мезонов, образованных в инклюзивных *п N* -взаимодействиях при высоких энергиях, показывает нальчие заметной асимметрии в с.ц.м. реакции ^{/1,3-5/}. Ранее нами была дана простая интерпретация этого эффекта ^{/1/}.

В настоящей работе анализируются спектры продольных импульсов пионов $\left(\frac{dN}{dp}\right)$ в реакции

$$\pi^{-}p \rightarrow \pi + \dots$$
 (1)

при импульсе p = 4 Гэв/с с целью поиска системы координат, в которой распределение $\frac{dN}{dp_{||}}$ имеет симметрию (Q - система). В реакцию (1) не включены события с протонами в конечном состоянии (полуинклюзивный процесс).

Спектры $\frac{dN}{dp_{11}}$ в (1) вычислялись при различных значениях $R = \left|\frac{p_p}{p_{\pi}}\right| = 1,0.42,0$ (p_p , p_{π} – импульсы первичных протонов и π –ме-зонов). Полученные при этом распределения аппроксимировались экспо-ненциальной функцией:

$$\frac{dN}{d|p|} = A_{||} e^{-a_{||}||p_{||}|}, \qquad (2)$$

где A₁₁ - нормировочный множитель.

Рис. 1. Зависимость коэффициентов *а* 1 от параметра *R*.

Рис. 3. Энергетическая зависимость параметра R.

Распределения $\frac{dN}{d|p||}$ в выбранном интервале значений удовлетворительно описываются функцией (2). На рис. 1 приведена зависимость полученных из аппроксимации коэффициентов $a_{||}$ как функция от R для положительных $(a_{||}(>0))$ и отрицательных $(a_{||}(<0))$ значений $p_{||}^{\text{со$ $ответственно.}}$ Результаты настоящей работы показывают, что симметрия распределения $\frac{dN}{dp_{||}}$ наблюдается при $R = 1,69\pm0,15$ (рис. 2). Полученное значение R находится в согласии с данными при больших энергиях (рис. 3). В работе ^{/1/} нами было показано, что коэффициенты наклонов $a_{||}$ в с.ц.м. могут быть выражены следующим образом:

$$a_{||}(>0) = a_{0}^{*} [1 - \beta_{Q} \frac{E^{*}(>0)}{p^{*}(>0)}], \qquad (3)$$

$$a_{||}(<0) = a_{0}^{*} [1 + \beta_{Q} \frac{E^{*}(<0)}{p_{1}^{*}(<0)}], \qquad (4)$$

где a_0^* - коэффициент наклона спектра $\frac{dN}{dp_{||}}$ в Q -системе, β_Q скорость движения Q -системы относительно с.ц.м. реакции; E^* - энергия π -мезона в этой системе. Из (3) и (4), полагая

$$\frac{E^{*}(>0)}{p_{||}^{*}(>0)} = \frac{E^{*}(<0)}{p_{||}^{*}(<0)} = \overline{\mu}, \qquad (5)$$

(6)

получим

$$\beta_{Q} = \frac{a_{||}(<0) - a_{||}(>0)}{a_{||}(<0) + a_{||}(>0)} \frac{1}{\overline{\mu}}$$

Величина β связана с R соотношением:

$$R = \frac{P_p}{P_{\pi}} = \frac{P_p + \beta_Q E_p}{P_p - \beta_Q E_{\pi}}$$
(7)

Из выражений (6) и (7), используя экспериментальные значения $a_{||}(>0)$, $a_{||}(<0)$ и μ , получим

 $R = 1,5\pm0,1$.

Полученное значение R, как видно, находится в удовлетворительном согласии с экспериментом. Другая интерпретация этого эффекта в рамках кварковой модели⁽²⁾ была предложена в работе⁽³⁾. Так как π -мезон состоит из двух кварков $(q\bar{q})$, а протон из трех $(qq\bar{q})$, то, пренебрегая энергией связи, можно написать $P_p = 3P_q$ и $P_{\pi} = 2P_q$, где P_q импульс кварка. Рассматривая взаимодействие π -мезона с нуклоном как взаимодействие кварка с антикварком и полагая массы кварков одинаковыми, получим, что симметрия в спектре продольных импульсов образованных пионов должна наблюдаться в системе, где R = 1,5.

Литература

1. В.Г. Гришин, Ш.В. Иногамов, Б.С. Юлдашев, Г. Янчо. ЯФ, <u>14</u>, 1281 (1971); Препринт ОИЯИ, Р1-5849, Дубна, 1971.

2. H. Satz. Phys. Rev. Lett. 19, 1453 (1967).

- 3. J.W.Elbert, A.R.Erwin, W.D.Walker. Phys.Rev. D3, 2042 (1971).
- 4. O.Czyzewski. Rapporteur's Talk at the Colloquim on Multiparticle Dynamics, Helsinki, May 1971.
- 5. M.Deutschmann. Rapporteur's Talk at the Amsterdam Int. Conf. on Elem. Particles, Amsterdam, 1971.

Рукопись поступила в издательский отдел 18 мая 1972 года.