6387

JAPANDIX NPOKE

PAGE PAGE PAGE

Л.Н.Глонти, Ю.М.Казаринов, В.С.Киселев, И.Н.Силин

МАТРИЦА УПРУГОГО НУКЛОН-НУКЛОННОГО РАССЕЯНИЯ ПРИ ЭНЕРГИИ 630 МЭВ II. Фазовый анализ NN-рассеяния

P1 - 6387

Л.Н.Глонти, Ю.М.Казаринов, В.С.Киселев, И.Н.Силин

МАТРИЦА УПРУГОГО НУКЛОН-НУКЛОННОГО РАССЕЯНИЯ ПРИ ЭНЕРГИИ 630 МЭВ II. Фазовый анализ NN-рассеяния

C LI LIN SASJINOTOKA

* Тбилисский государственный университет

Фазовый анализ нуклон-нуклонного рассеяния при энергии 630 Мэв/1/ дал два, примерно равновероятных, набора фазовых сдвигов. Уточнение этих наборов по результатам измерения параметра тройного рассеяния A_{pn} /2/ позволило дискриминировать один из них (набор 2 - по обозначениям/1/).Однозначность фазового анализа была получена в предположениях, что: 1) взаимодействие нуклонов с нуклонами в состояниях с орбитальными моментами l > 5 правильно описывается моделью однопионного обмена (*OPE*); 2) мезонообразование идет из начальных ${}^{3}P_{0.1,2}$, ${}^{1}D_{2}$ и ${}^{3}F_{2.4.4}$ состояний.

NN -данных 1,3/ Сравнение разных вариантов фазового анализа показывает, однако, что предположения, использованные при его проведении, могут заметно менять характер и количество полученных решений. В связи с этим проверка указанных предположений представляет несомненный интерес. В настоящее время вряд ли можно указать следствия предположений, перечисленных в пунктах 1 и 2, которые можно было бы проверить экспериментально достаточно строго. Единственным способом проверки их сегодня, по-видимому, является проведение фазового анализа с изменением границ области применимости модели OPĒ и числа начальных состояний, из которых идет мезонообразование. Если результаты, полученные при этом, покажут, что качество описания экспериментальных данных не улучшается, то это обстоятельство будет косвенным подтверждением использованных предположений, а, следовательно, и подтверждением результатов работы /2/. Появившаяся за последние годы обширная экс-

периментальная информация и уровень развития вычислительной техники позволяют провести такую проверку.

Изложенные здесь соображения побудили нас повторить фазовый анализ NN -данных при средней энергии 630 Мэв с измененными границами применимости модели *OPE* и с учётом полных сечений неупругого взаимодействия. Ниже приводятся результаты этого анализа. Естественно, что при решении задачи мы старались использовать максимальное число экспериментальных данных с целью уменьшить возможную неоднозначность результатов. Как и ранее, поиск решений фазового анализа проводился в два этапа. На первом этапе искались фазовые сдвиги для состояний с полным изотопспином T =1, на основе информации по *pp* -рассеянию⁴. Затем эти фазовые сдвиги фиксировались, и велся поиск со случайных начальных значений фазовых сдвигов при T =0 с использованием только *пр* -данных. Полученные наборы уточнялись по полной совокупности *NN* данных.

1. Экспериментальные данные

Со времени проведения фазового анализа^{/1/} количество экспериментальных результатов по упругому рассеянию нуклонов нуклонами при энергиях, близких к 630 Мэв, воэросло почти в два раза. Экспериментальная информация по pp -рассеянию приведена в работе^{/4/}, np -данные - в приложении к настоящей работе, см. также^{/5-20/}. Большая часть новых экспериментальных результатов получена при изучении pp -рассеяния. Количество np -данных относительно невелико. Опубликованы работы по измерению дифференциальных сечений при энергии 649 Мэв^{/14/}, поляризации^{/15/} и параметров тройного рассеяния^{/2},15,19,20/, которые ранее не измерялись.

В фазовом анализе были использованы перенормированные значения лифференциальных сечений pp и np -рассеяния и поляризации P_{pp} . Процедура перенормировки данных описана в работе^{/4/}. Дифференциальные сечения np -столкновений нормировались на полное сечение упругого рассеяния $\sigma_{tot.el.}^{np} = 27,3\pm1,1$ мб, которое в интервале энергий 580-660 Мэв в пределах ошибок постоянно^{/5/}. Нормировочные коэффициенты для разных измерений приведены в таблице 1. Перенормировка не устранила больТабляца 1

Обработанные экспериментальные данные.									
Эксп.	Е,	(x ^{OLDRP}	норма	xx)	ВКЛАД	\mathbb{X}^2	аборов	жеточ-	
величина	Мэв	TOTER	<u></u>	10.7	<u> </u>	6.1	5.0	/16/*	
61.1	615-640	- <u>4</u>			9.8	7.8	7.5	/16/*	
6:1	510-040	3	0.960	0.042	0.9	3.7	2.7	/18/*	
(d 6/20)	590	10	1,074	0,050	11,1	15,1	14,4	/19/*	
(/u.s.4/p	° 590	12	1,093	0,048	7,8	7.5	8.7	/20/*	
	650	4I(5)	0,986	0,043	30,3	28,3	28,1	/21/*	
	657	I	0,940	0,050	6.5	4,6	2,9	/23/*	
	660	7(7)	0,964	0,038	•••			/24/*	
	660	6(6)	0,965	0,050				/26/*	
	590		0.937	0.032	3.3	3,4	3,3	/19/*	
P_{PP}	580	13	1,098	0,027	8,8	9,1	8,6	/19/*	
	596	16	0,977	0,038	4.8	4.7	4,7	/28/*	
	609	26(26)	0,971	0,013	-,-			/29/	
	614	8	0.978	0,084	4,5	9,9	9,1	/31/*	
	635	6	0,893	0,044	6,8	8,3	8,0	/33/*	
•	635	9(I) 25	1,040	0,028	8,8	8,8	9,6	/34/*	
<u> </u>	600	I(I)		0,010				/35/	
D_{pp}	600	5(1)			6,5	7,2	6,9	/36/	
	635 635	5 I(I)			, ,0	13,1	11,1	/33/	
	635	9(1)			12,3	10,7	14,9	/38/*	
	660	25			10,3	9,0	7,8	/36/*	
<u> </u>	600	3			3,4	0,6	9,2	/40/*	
$ R_{PP}$	605	3			3,8	6,5	4,2	/41/*	
1 ''	635 670	5			4,8	4,6	9,3	/40/*	
Aen	608	5			10,5	3,5	7,7	/43/*	
R'n	600	3			2,3	0,6	14,6	/40/* /40/*	
CPP	605-640	5			6.3	13,5	12,4	/44,45/*	
Crp	605-660	3			0,6	1,0	Ι,4	/44,47/*	
2np	620-630	3			3, I	4,6	3,6	/5/	
2np	620-630	2			6,4	7,2	7,3	/5/	
121.	580	3	0,984	0,066	0,6	0,5	0,2	/8/	
lae/du	580 fac	I4(I4)	0,893	0,041	6.2	6.3	5.5	/10/	
	630	15(15)	0,976	0,042				/11/	
	630	10	0,841	0,041	4,9 18.2	28.6	16,6	/13/	
	649	32(32)	0,667	0,028				/14/	
D	600	8			13,9	10,5	12,7	/15/	
L np	605	3			3,4	8,4	6,0	/16/	
	635	9			9,6	7,6	17,6	/17/	
Dpn	612-635	4			1,1	5,3	4,7	/17,18/	
$D_{n\rho}^{t}$	600	5			4,0	1,3	8,1	/19/	
R pn	605	3			15,0	6,1	8,3	/16/	
APR	605	4			5,5	13,3	6,3	/2/	
R ^t pn	600	4			4,2	10,6	3,8	/20/	
R'En	600	4			5,I	0,6	4,4	/20/	

х) В скобках указано число точек, исключенных из фазового анализа.

хх) Перенормированные вначения параметров можно получить, разделив величины из приложений - I работы^{4/} и II наст. работы на нормы.

*) Ссылка относятся к работе 4/

Таблица 2.

ших отклонений от средних значений некоторых данных 9,11,14 , и они при анализе не использовались. Особенно плохо согласуются с другими данными вновь измеренные в работе 114 дифференциальные сечения np – рассеяния при энергии 649 Мэв. Нормировочный коэффициент для них равен 0,667±0,028. Эти данные не согласуются и с ходом энергетической зависимости дифференциальных сечений np -рассеяния в интервале энергии 400-1000 Мэв. Необходимо заметить также, что опубликованы только предварительные результаты этой работы, окончательные данные до сих пор в литературе не появились.

2. Поиск решений и результаты фазового анализа

Фазовый анализ выполнялся по программе, разработанной ранее в Дубне^{/21/}. Поиск решений NN -данных проводился при $l_{m\,dx}$ =6, взаимодействие в состояниях с орбитальными моментами $l \ge 7$ учитывалось в одномезонном приближении с константой связи f^2 =0,08. Как уже отмечалось выше, фазовые сдвиги для состояний с полным изотопическим спином T =1 брались из результатов фазового анализа pp -данных^{/4/} и фиксировались. Со случайных начальных условий находились только реальные части фазовых сдвигов для состояний T =0, мнимые части их полагались равными нулю и фиксировались. Для каждого из двух решений, найденных в работе^{/4/}, при фазовом анализе pp -данных было сделано по 170 попыток поиска фазовых сдвигов изосинглетных состояний. Затем полученные наборы фазовых сдвигов уточнялись по полному экспериментальному материалу (pp и np -данные совместно).

В результате поисков было найдено 12 решений в интервале $\overline{\chi}^2 \leq \chi^2 \leq 1.5 \ \overline{\chi}^2$. при $\overline{\chi}^2$ =308. Из них семь было отброшено по χ^2 -критерию на уровне достоверности 1%. Из оставшихся пяти наборов (χ^2 = =344,1, 351,6, 353,0, 366,5 и 370,8) три лучших по χ^2 приведены в таблице 2 (наборы A1 - A3). Необходимо заметить, что решения с χ^2 , равным 344,1 и 366,5, сливаются в одно, если "отпустить" мнимые части фазовых сдвигов, фиксированные нулями. При этом, правда, $Im({}^{3}D_{2})$ уходит в нефизическую область (становится отрицательной) на семь с лишним ошибок.

Фазовые сдвиги нуклон-нуклонного рассеяния вблизи

энергии 630 Мэв (k = 6).

,				тех					
1	фазовые	набор АІ	набор А2	набор АЗ	набор BI				
	СДВИГИ	5° ±15°	5° ±05°	5° ±45°	5° ±25°				
		ьные час	стк						
	טָרָהָאָה אַרָאָר אַרָאָר אָרָאָר אַרָאָר אַראָר אַראָר אַראָר אַראָר אַראָר אַראָר אַראָר אַראָר אַראָר אַראָר גיין אַראָראַראַראַראַראַראַראַראַראַראַראַראַראַר	-26,0 2,7 -16,8 4,0 -62,35 3,6 -36,55 2,0 17,8 0,9 13,55 2,3 9,35 2,3 9,37 1,5 -1,1 1,1 2,0 0,5 9,37 1,6 -1,6 0,8 0,9 1,5 -1,6 0,8 0,9 0,5 -5,3 1,6 -1,6 0,8 0,9 0,5 -5,3 1,6 -1,6 0,8 0,9 0,5 -5,3 1,6 -1,6 0,8 0,9 0,5 -5,3 0,6 12,7 0,8 0,8 0,8 0,9 0,5 -5,3 0,6 1,7 -4,4 0,6 1,7 0,4 1,6 0,8 0,8 0,9 0,5 -5,3 0,6 1,7 -4,8 0,9 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4	T B W T C X -45,2 3,8 34,0 7,3 -9,5 5,8 -46,1 4,0 9,6 1,7 -27,2 5,4 2,7 -27,2 5,4 2,7 11,1 2,7 10,7 1,9 2,4 1,4 -1,5 0,9 1,9 1,2 0,9 -5,7 2,0 0,9 1,0 5,7 1,0 0,9 1,0 5,7 2,0 0,9 1,0 5,7 1,0 0,9 1,0 5,7 2,0 0,9 1,0 5,7 1,0 0,9 1,0 5,7 1,0 0,9 1,0 1,0 5,7 1,0 0,9 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	-52,9 3,1 23,1 3,7 -107,4 6,0 -8,8 3,7 -54,6 6,1 7,8 1,3 -32,2 1,8 28,0 3,9 8,1 2,2 11,1 1,7 -0,3 2,3 4,3 1,0 -10,0 1,4 -14,8 1,3 -2,3 0,9 1,0 1,1 -6,1 2,0 -4,3 2,1 4,3 0,7 0,5 1,9 0,1 1,2 0,6 0,7 -3,2 1,0 -6,4 1,1 -2,4 0,6 1,0 0,3 3,5 1,3 -3,2 1,2 -0,5 0,3 -3,2 1,2 -0,5 0,3 -3,2 1,2 -0,5 0,3 -10,5 0,3 -10,5 0,3 -10,5 0,3 -10,5 0,3 -10,5 0,3 -10,5 0,3 -54,6 6,0 -54,6 6,0 -10,7 -54,6 6,1 -2,4 0,6 -3,5 1,2 -3,2 1,2 -3,3 1,2 -3,	-30,8 2,6 -18,4 3,8 -18,1 2,6 -21,9 1,5 29,1 1,6 6,3 3,5 -32,9 1,6 12,4 2,6 -3,5 -3,7 1,6 12,4 2,6 -8,1 1,5 5,1 1,3 -3,6 0,6 11,8 0,9 -7,3 1,4 1,1 0,6 3,6 0,9 -6,3 0,1,2 -4,5 1,0 -2,9 0,6 1,1 0,6 -1,7 0,5 2,9 0,7 -1,8 1,0 -2,9 0,7 -1,8 0,6 -1,7 0,5 2,9 0,7 -1,8 1,0 -2,9 0,7 -1,8 0,6 -1,7 0,5 2,9 0,7 -1,8 1,0 -2,9 0,7 -1,8 0,6 -1,7 0,5 2,9 0,7 -1,8 1,0 -3,6 0,6 -1,7 0,5 2,9 0,7 -1,8 1,0 -2,9 0,7 -1,8 0,6 -1,7 0,5 2,9 0,7 -1,8 0,0 -2,9 0,7 -1,8 0,6 -1,7 0,7 -1,8 1,0 -2,9 0,7 -1,8 1,0 -2,9 0,7 -1,8 1,0 -2,9 0,7 -1,8 1,0 -2,9 0,7 -1,8 1,0 -2,9 0,7 -1,8 1,0 -2,9 0,7 -1,9 0,6 -1,7 0,6 -1,7 0,6 -1,7 0,6 -1,7 0,6 -1,7 0,6 -1,7 0,7 -1,8 1,0 -2,9 0,7 -1,8 1,0 -2,9 0,7 -1,8 1,0 -2,9 0,7 -1,8 1,0 -2,9 0,7 -1,9 0,6 -1,7 0,7 -1,8 1,0 -2,9 0,7 -1,8 1,0 -2,9 0,7 -1,8 1,0 -2,9 0,7 -1,9 0,6 -1,7 0,7 -1,8 1,0 -2,9 0,7 -1,8 1,0 -2,9 0,7 -1,9 0,6 -1,7 0,5 2,9 0,7 -1,8 1,0 -2,9 0,7 -1,8 1,0 -1,9 0,0 -1,9				
	³ I ²	-2,4 0,6	0,8 0,6	-0,2 0,6	-0,4 0,9				
		Ľ	мнимые части						
	³ P°, ³ P ⁴ ¹ D ⁴ ³ P ⁴ ³ P ⁴ ³ P ⁴	2,2 3,3 O(фыкс.) 2,6 I,4 4,0 2,5 6,4 I,I 8,3 I,7 -0,7 0,8	IO,5 4,6 8,3 3,6 O(фикс.) 6,I 2,3 I,2 I,5 3,I I,4 2,9 I,I	II,6 4,8 23,9 5,9 О(фикс.) 5,8 I,7 О(фикс.) I,9 0,9 2,5 0,7	О(фикс.) О(фикс.) 4,5 I,3 I5,5 3,7 О,9 О,9 I,9 I,4 I,9 O,6				
	f ²	0,056 0,010	0,051 0,013	0,061 0,019	0,057 0,007				
	x٤	344,I	351,6	354,0	375,0				
	χ^2/χ^2	1,12	1,14	I,15	I,22				
	P(x1)%	7,5	4,5	3,6	0,6				

1. 6. 2. 6.

Таблица 3.

Итак, если пользоваться критерием χ^2 , фазовый анализ NN -данных при $l_{max} = 6$ не дает однозначного результата. Применение r -критерия^{/22/} дает возможность отбросить четыре решения с χ^2 344,1 с вероятностью ошибки первого рода не более 0,8%. Таким образом, r -критерий позволяет получить однозначный результат фазового анализа NN -рассеяния. Дополнительным критерием для отбрасывания решений А2 и А3 (см. таблицу 2) может служить резкое несогласие реальных частей фазового сдвига 3D_1 этих наборов (35,1 ± 5,7 и 28,0 ±3,9, соответственно) с энергетической зависимостью фазы 3D_1 в области меньших энергий.

Следует отметить, однако, что полученные вероятности ошибки первого рода при отбрасывании решений с большим χ^2 могут оказаться несколько заниженными благодаря:

 Наличию в экспериментальных данных систематических ошибок, которые не устранены перенормировкой. На наличие таких ошибок прежде всего указывает, например, разброс данных по измерению параметра D_{**} /4/.

2. Использованию конкретной модели мезонообразования. В частности, это обстоятельство, по-видимому, является причиной того, что единственный набор фазовых сдвигов, который был получен в работе/2/, оказался по результатам данного фазового анализа далеко не лучшим по значению χ^2 (набор В1 таблицы 2). Здесь следует напомнить, что этот набор был найден в предположении равенства мнимых частей фазовых сдвигов состояний с данным орбитальным моментом ${}^3P_{0,1,2}$ и ${}^3F_{2,3,4}$

Перечисленные выше факторы могут сильно влиять на форму поверхности функционала χ^2 и при появлении новых экспериментальных данных отношение между величинами χ^2 найденных нами наборов может измениться.

Для выяснения того, как влияет на описание экспериментальных данных уменьшение максимального орбитального момента на единицу, найденные решения были уточнены при $l_{max} = 5$. При этом, из пяти полученных наборов на уровне достоверности 1% по χ^2 критерию остается 2 (см. табл. 3). Описание экспериментальных данных ухудшается при этом несущественно, что указывает на применимость одномезонного приближения, начиная с орбитальных моментов l = 6. Фазовые сдвиги нуклон-нуклонного рассеяния вблизи

		энерги	и 630 Мэв ($\ell_{MAX} = 5$).	
[фазовые	наборАI	набор А2	набор BI
	сдвиги	5° ±25°	5° ±25°	5° ±45°
		дейст	вительные	части
	איז אין	$\begin{array}{c} -32,7 & 3,9 \\ -18,1 & 3,6 \\ -62,6 & 4,7 \\ -7,9 & 3,0 \\ -38,1 & 2,1 \\ 15,5 & 1,2 \\ 14,4 & 2,7 \\ -41,9 & 2,6 \\ 7,7 & 1,8 \\ 7,4 & 3,0 \\ -5,6 & 0,9 \\ 1,1 & 1,0 \\ -2,5 & 0,8 \\ 4,0 & 0,4 \\ 1,5 & 1,6 \\ -5,8 & 1,2 \\ 4,5 & 0,5 \\ 15,4 & 1,5 \\ -1,2 & 0,6 \\ -5,6 & 0,9 \\ -5,6 & 0,9 \\ -5,6 & 0,9 \\ -5,6 & 0,9 \\ -5,6 & 0,9 \\ -5,6 & 0,9 \\ -5,6 & 0,9 \\ -5,1 & 0,5 \\ 1,6 & 0,1 \end{array}$	$\begin{array}{c} -39,8 & 3,6 \\ 35,1 & 2,1 \\ -74,8 & 5,9 \\ 3,4 & 4,2 \\ -45,2 & 2,6 \\ 11,3 & 1,3 \\ -31,6 & 1,8 \\ 36,8 & 3,5 \\ 5,2 & 2,0 \\ 18,4 & 1,1 \\ 2,6 & 1,2 \\ 1,3 & 1,2 \\ -8,3 & 1,3 \\ -1,7 & 2,0 \\ -0,8 & 0,9 \\ 1,9 & 0,5 \\ 1,9 & 1,9 \\ 3,0 & 1,7 \\ 4,2 & 0,7 \\ 7,8 & 1,5 \\ 1,1 & 0,6 \\ -0,2 & 0,7 \\ -1,1 & 0,6 \\ -6,1 & 0,9 \\ -4,5 & 0,6 \\ 1,3 & 0,2 \end{array}$	$\begin{array}{c} -31,3 & 2,5 \\ -21,5 & 2,9 \\ -18,4 & 2,4 \\ -19,8 & 3,6 \\ -33,4 & 1,5 \\ 29,2 & 1,5 \\ 8,8 & 3,0 \\ -30,6 & 1,6 \\ 11,4 & 2,4 \\ 20,5 & 2,4 \\ -9,4 & 1,3 \\ 52,8 & 1,0 \\ -30,6 & 1,4 \\ 1,0 & 0,6 \\ 3,7 & 6,9 \\ -7,5 & 1,1 \\ -8,6 & 1,4 \\ 1,0 & 0,6 \\ 3,7 & 6,9 \\ -7,5 & 1,1 \\ -4,7 & 0,5 \\ -5,5 & 0,8 \\ -3,7 & 0,6 \\ -1,6 \\ -1,6 \\ 0,4 \\ \end{array}$
			мнжмне ча	СТИ СТА
	³ P ₀ ³ P ₁ ³ P ₁ ³ F ₁ ³ F ₁ ³ F ₁	3,8 3,2 0,0 1,9 3,5 1,6 7,1 3,5 1,6 1,4 7,8 1,8 0,5 0,8	8,4 3,9 7,0 2,4 О(фикс.) 5,8 2,1 2,6 1,5 5,9 1,2 0,9 0,8	О(фикс.) О(фикс.) 5,4 I,3 15,2 3,7 I,5 0,7 I,2 I,2 I,8 0,6
	f ²	0,074 0,005	0,051 0,006	0,065 0,004
	χ^2	364,9	366,5	385,7
	P(x5)%	2,3	I,8	0,4
	x2/x2	1,17	1,18	I,24

Уточнение найденных решений с варьированием мнимых частей фазовых сдвигов для T = 0 результатов не дало. Мнимые части фазовых сдвигов для этих состояний оказываются равными нулю или уходят в нефизическую область $(lm \delta_{T=0} \leq 0)$.

Заключение

Подводя итоги настоящей работы, необходимо отметить следующее:

1. Поиск решений в фазовом анализе нуклон-нуклонного рассеяния при средней энергии 630 Мэв дал 5 наборов фазовых сдвигов на уровне достоверности 1% по критерию χ^2 .

2. Использование *г* -критерия позволяет отбросить четыре решения с вероятностью ошибки первого рода не более 0,8%. Однако эта вероятность может оказаться заниженной при наличии в экспериментальных данных систематических погрешностей.

3. Изменение границы области применимости модели однопионного обмена (переход с $l_{max} = 5 \times l_{max} = 6$) существенно не улучшает описания экспериментальных данных. Этот факт указывает на применимость модели. *ОРЕ*, начиная с орбитальных моментов l = 6.

4. При существующей точности экспериментальных данных учёт мезонообразования из состояний ${}^{3}P_{1,2,3}$, ${}^{1}D_{2}$ и ${}^{3}F_{2,3,4}$ дает удовлетворительное описание экспериментальных данных.

5. Относительно плохое описание наблюдаемых на опыте величин при совместном фазовом анализе по сравнению с анализом одних Pp – данных^{/4/}(χ^2/χ^2 =1,12 и 1,03 для лучших наборов, соответственно), по-видимому, указывает на то, что и *пр* -данные не свободны от систематических ошибок.

6. Для уточнения сведений о матрице нуклон-нуклонного рассеяния необходимо вместе с измерением параметров упругого pp -рассеяния, указанных в работе^{/4/}, провести измерения поляризационных параметров в *np* -рассеянии, в частности, поляризации, деполяризации и параметра A_{pn} при углах, больших 130° в с.ц.м., параметров R_{np}^{t} и A_{np}^{t} в широком интервале углов. Кроме того, т.к. предсказываемые разными наборами кривые зависимости параметров от угла, в основном, мало отличаются друг от друга, было бы крайне интересно заметно повысить среднюю точносте ранее измеренных данных.

На рис. 1-4 приведены рассчитанные по двум лучшим наборам фазовых сдвигов A1 и A2 (см. табл. 2) зависимости величин, наблюдаемых на опыте, от угла в упругом ^{np} -рассеянии, и известные экспериментальные данные без перенормировки (см. приложение). Тонкими линиями указаны коридоры ошибок для кривых A1. Для кривых A2 они примерно такой же ширины. Здесь не приводятся зависимости параметров упругого pp -рассеяния, предсказываемые наборами фазовых сдвигов нуклон-нуклонного рассеяния, т.к. в пределах ошибок они повторяют предсказания анализа pp -данных^{/4/}.

В заключение авторы выражают благодарность Л.С. Ажгирею, Р.Я. Зулькарнееву, Г.Д. Столетову за полезные дискуссии, В.Р. Абазовой В.А. Максимовой и Т.Д. Тимофеевой – за помошь в работе. Авторы глубоко признательны также С.И. Биленькой, М.И. Джгаркава, Н.Н. Мачильской и А.М. Розановой, во многом способствовавшим успешному проведению этой работы.

Литература

- Л.Н. Глонти, Ю.М. Казаринов, А.М. Розанова, И.Н. Силин. ЯФ, 7, 1060, (1968).
- 2. С.И. Биленькая, Л.Н. Глонти, Ю.М. Казаринов, В.С. Киселев. ЖЭТФ, 59, 1049 (1970).
- M.H.MacGregor, R.A.Arndt, R.M.Wright. Phys.Rev., 169, 1149 (1968). Phys.Rev., 173, 1272 (1968).

. .

- Л.Н. Глонти, Ю.М. Казаринов, В.С. Киселев, И.Н. Силин. ОИЯИ, Р1-6339, Дубна, 1972.
- 5. В.С. Барашенков. Сечения взаимодействия элементарных частиц. Москва, "Наука", 1966 г.
- R.E.Mischke, T.J.Devlin, W.Johnson, J.Norem, K.Vosburgh. Phys. Rev. Lett., 25, 1724 (1970).
- 7. D.V.Bugg, D.S.Salter, G.H.Stafford, R.F.George, K.F.Riley, R.J.Tapper. Phys.Rev., 146, 980 (1966).

- 8. Н.С. Амаглобели, Ю.М. Казаринов. ЖЭТФ, 34, 658 (1958).
- 9. Ю.М. Казаринов, Ю.Н. Симонов. ЖЭТФ, 31, 169 (1956).
- Б.М. Головин, В.П. Джелепов, Ю.В. Катышев, А.Д. Конин, С.В. Медведь. ЖЭТФ, 36, 735 (1959).
- 11. Н.С. Амаглобели, Ю.М. Казаринов. ЖЭТФ, 37, 1587 (1959).
- 12. Н.С. Амаглобел., Б.М. Головин, Ю.М. Казаринов, С.В. Медведь, И.М.Полев. ОИЯИ, Р-430, Дубна, 1959.
- 13. Ю.М. Казаринов, Ф. Легар, Ю.Н. Симонов. ОИЯИ, Р-1207, Дубна, 1963.
- P.F.Shepard, T.J.Devlin, R.E.Mischke, T.Solomon. PPAR-10, Prinseton, 1969.
- 15. D.Cheng, B.Macdonald, J.A.Helland, P.M.Ogden. Phys.Rev., 163, 1470 (1967).
- Ю.М. Казаринов, Ф. Легар, А.Ф. Писарев, Ю.Н. Симонов, З. Яноут, ЯФ, 4, 567 (1968).

Ю.М. Казаринов, Ф. Легар, А.Ф. Писарев, З. Яноут. ЯФ, 5, 140 (1967).

- В.П. Джелепов, Б.М. Головин, В.С. Надеждин, В.И. Сатаров. XII Международная конференция по физике высоких энергий, Дубна, 1964 г. Атомиздат, 1, 11 (1966).
- Л.Н. Глонти, Ю.М. Казаринов, М.Р. Хаятов. ОИЯИ, Р1-5743, Дубна, 1971. ЖЭТФ, 62, 1998 (1972).
- 19. P.H.Surko. UCRL-19451 (1970).
- 20. Kwok-Chu Leung. UCRL-19705 (1970).
- 21. Ю.М. Казаринов, И.Н. Силин. ЖЭТФ, 43, 692 (1962).

22. А. Пазман. ОИЯИ, Е5-3775, Дубна, 1968.

A.Pazman, S.I.Bilenkaya, J.Bystricky, Z.Janout, Y.M.Kazarinow, F.Lehar. Czech.J.Phys., B19, 882 (1969).

Рукопись поступила в издательский отдел 17 апреля 1972 года.

Рис. 1

вблизи энергии 630 Мэв .

E, Man	θ ⁰ ColloMo	f(0)	±∆f	ИСТОЧ- НИК	Е, Мэв	Ө ⁰ с.ц. ш.	f(0)	±∆f	источ ник
<u>п</u>	олное се	ченые	Orp ((MQ)	по	лное неу	пр. сече	ние б ^п	р (м
580		36.0	2.2	/5/	590	<u> </u>	5.8	0,5	/5/
590		36.0	2.0		597		8.9	1.0	
ŏň		36.2	2'2		018	•	10. T -	1.4	
200		75 7	~,~	161	820		10,8	1 5	
		30,7	, ,,,	1.	670		10,0	0,64	
020		37,0	3,0	/5/	0.00		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	v , <u>v</u> ,	
530		37,0	4,0		045		11,0	1,5	
530		35,2	0,9		660	1	10,5	2,4	
5 3 5		36,6	0,3	/6/	665		11,3	1,4	
50		37,0	I,8	/5/					
55		38,64	0,2	/7/				•	
30	•	37,5	0,3	/6/					
	диф	ференци	альное (сечение	(do	/dQ)	(мб/с	rep.)	
- 00		M C		<u>/0/</u>	670	150.05	7 50	- 40	/10
280	11,0	7,5	1,0	/0/	000	109,20	3,50	0,40	/12
	23,0	5,0	0,8			161,50	4,00	0,25	
	35,0	3,7	0,2			163,83	4,36	0,30	
580	45,0	3,00	0,30	/9/		166,50	4,68	0,33	
	54,0	2,30	0,17	1		168,50	5,07	0,33	
	63,0	2,10	0,20			170,75	5,85	0,41	
	73,0	1,60	0,13			173,08	5,97	0,38	
	83.0	1.10	0.08	1		174.17	6,12	0.38	
	93.0	0.91	0.06	1		176,50	7.26	0.87	
	103.0	0.78	0.05		1	180.00	8,19	0,60	
	114.0	0.78	0.05		630	II.6	7.94	0.70	113
	124.0	1.00	0.07	1		23.0	4.58	0 44	710
	135.0	1 70	0,12		1.	34 3	3,00	0,40	
	147 0	2,10	0,20		1	35 0	3,30	0,40	
	157 0	3,40	0,20	1		44,0	0,00	0,34	
	101,0	5,40	0,30		· · · ·	44,0	6,04 0 04	0,64	
	109,0	5,30	0,50			45,0	2,74	0,43	•
<u> </u>	19010	8,40	<u> </u>	(10)		52,7	2,33	0,20	
290	5,0	10,0	1,5	/10/		62,3	1,700	0,073	, e
	8,0	8,2	1,4			72,0	I,440	0,073	i
	11,5	6,4	0,9		1 ·	81,7	I,245	0,042	
	23,0	4,3	0,5			91,7	I,040	0,042	
	35,0	3,7	0,2			102,0	0,996	0,052	
630	11,50	8,21	1,11	/11/		110,7	0,996	0,052	
	23,83	4,95	0,68			123.3	I.500	0.063	;
	35,00	3,78	0.23			134.3	2,030	0.065	
	44,08	2,55	0.14			145.6	3,170	0.075	
	53.00	2.15	0.17			157.0	4,220	0,002	;
	62.33	1.73	0.08	-		164.0	5.25	0,12	
	72,00	1,53	0,00		1	168 45	6 16	0,12	
	81,83	1,00	0,05		1	100,40	0,40	0,11	
	01,00	1,17	0,04		}	10,1	0,47	0,27	
	102,00	0,97	0,04		640	<u></u>	10,00	0,54	17.4
	102,00	0,94	0,04		049	51,0	3,316	0,203	/14
	116,00	~ U,94	0,05		14 A.	54,7	2,877	0,151	
	123,33	1,39	0,07			58,4	2,346	0,112	
	134.33	1.66	0.12		1	62.2	I.825	0.085	
	101,00	.,		1		,	-,	~,~~	
	145,66	2,52	0,10			65,9	I,685	0,077	

Приложение

				(,			
Е, Мев	9 ⁰ с.ц. н.	f(θ)	±∆f	NCTOU- HNE	Е, Мэв	ө ⁰ с.ц.ж.	f(0)	±∆f	источ- ник
дифференциельное сечение					(dC	/d <i>Q</i>)_n	ρ (<u>μ</u> σ/α	тер.)	
649	73,6 77,6 81,4 85,5 97,6	1,107 0,964 0,776 0,706 0,404	0,059 0,052 0,046 0,042 0,026	/14/		136,5 141,0 145,5 150,1 154,6	0,888 1,056 1,516 2,012 2,497	0,049 0,052 0,065 0,057 0,066	•
	IOI,7 IO6,I II0,3 II4,3 II9,0 I23,2 I27,6	0,389 0,477 0,482 0,505 0,540 0,570 0,599	0,025 0,027 0,026 0,022 0,025 0,041 0,040	•		159,2 163,7 167,2 169,5 171,8 174,1 176,3	2,992 3,376 4,149 5,273 5,620 6,348 7,948	0,100 0,105 0,163 0,182 0,173 0,209 0,230	•
	132,0	0,716	0,043	·		178,3	8,570	0,365	· .
	· · ·	пс	ляр	ж 8 8	ция	P_n	ρ		
600	33,0 48,5 64,8	0,364 0,25I 0,084	0,04I 0,042 0,030	/15/	605	70,0 90,0 125,0	-0,05 -0,07 -0,44	0,18 0,06 0,16	/16/
	81,3 97,8 114,7 130,5	-0,155 -0,315 -0,345 -0,241	0,028 0,032 0,032 0,024		635	18,5 34,5 45,7 56,7	0,284 0,358 0,236 0,097	0,059 0,052 0,036 0,031	/17/
605	55,0 78,0 94,0 125,0	0,11 -0,15 -0,23 -0,30	0,023 0,06 0,07 0,04 0,08	/2/		90,0 112,5 134,3 145,7	-0,262 -0,381 -0,304 -0,208	0,020 0,042 0,052 0,043 0,071	
	деполя	ризация	D,	пр		деполя	ризация	$D_{n_{f}}^{t}$	
612 635	52,0 94,0 125,0 112,3	0,96 0,67 0,49 0,51	0, I4 0, II 0,24 0,39	/18/	600	65,0 90,0 102,0 124,0 180,0	0,18 0,23 0,58 0,10 -0,05	0,21 0,30 0,28 0,43 0,84	/19/
		R _{np}			605		Anp		
605	70,0 90,0 125,0	0,09 0,50 -0,06	0,19 0,11 0,26	/16/	605	55,0 78,0 94,0 125,0	0,88 0,64 0,75 0,70	0,18 0,20 0,14 0,21	/2/
		$R_{n\rho}^{t}$	·				$R_{np}^{\prime t}$:	
600	65,0 90,0 102,0 180,0	-0,64 -0,01 -0,24 -0,06	0,16 0,20 0,16 0,15	/20/	600	65,0 90,0 102,0	-0,08 0,09 0,02	0,16 0,20 0,16	/20/