

М.И.Адамович, Н.Далхажав, В.Г.Ларионова К.Д.Толстов, Г.С.Шабратова

СТРИППИНГ ДЕЙТРОНОВ 9,38 ГЭВ/С НА ЯДРАХ ФОТОЭМУЛЬСИИ

1972

Bbi(OKMX)HEPINH

AA6@PAT@PH9

P1 - 6386

М.И.Адамович*, Н.Далхажав, В.Г.Ларионова* К.Д.Толстов, Г.С.Шабратова

СТРИППИНГ ДЕЙТРОНОВ 9,38 ГЭВ/С НА ЯДРАХ ФОТОЭМУЛЬСИИ

*Физический институт им. П.Н. Лебедева АН СССР

Адамович М.И., Далхажав Н., Ларионова В.Г., P1 - 6386 Толстов К.Д., Шабратова Г.С.

Стриппинг дейтронов 9,38 Гэв/с на ядрах фотоэмульсии

Исследуется стриппинг с вылетом протонов при взаимодействии дейтронов 9,4 Гэв/с с ядрами фотоэмульсии. Измерены дифференциальное и полное сечения стриппинга на среднем ядре фотоэмульсии (*A* =47), которое равно 253-35 мб.

Сообщение Объединенного института ядерных исследований Дубна, 1972

Adamovich M.I., Dalkhazhav N., P1 - 6386 Larionova V.G., Tolstov K.D., Shabratova G.S.

Stripping of Deuterons of 9.38 GeV/c on Photoemulsion Nuclei

There is studied the stripping with the proton escape at the interaction of 9.4 GeV/c deuterons with the photoemulsion nuclei. The differential and total cross sections are measured for the stripping on the medium weight photoemulsion nucleus (A=47) which is equal to 253 + 35 μb .

Communications of the Joint Institute for Nuclear Research. Dubna, 1972 Ускорение дейтронов на синхрофазотроне ЛВЭ ОИЯИ до импульса 11 Гэв/с и получение выведенного пучка открыло возможность для широкой программы исследований по физике элементарных частиц и изучения взаимодействия релятивистских ядер.

В настоящей работе исследуется протонный стриппинг при взаимодействии дейтронов 9,38 Гэв/с с ядрами фотоэмульсии; предварительные результаты сообщались ранее в работе^{/1/}. В исследованиях взаимодействия дейтронов с ядрами фотоэмульсионный метод позволяет разделить упругие и неупругие стоикновения, а также выделить стриппинг протонов.

В опыте использовались фотоэмульсии типа БР-2 толшиной 400 мк, размером 10х20 см². Камера из 100 слоев была облучена выведенным монохроматичным пучком дейтронов. Плотность потока дейтронов в слоях эмульсии составляла $(2,4)\cdot 10^4 \ d/cm^2$, а угловой разброс пучка $\pm 0,12^\circ$, что позволяло надежно исключать из рассмотрения следы фоновых частии.

Измерения импульсов у 150 первичных частиц методом многократного кулоновского рассеяния дали для средней велич ны импульса значение (9,8<u>+</u>0,7) Гэв/с, полученное распределение показано на рис. 1 и определяет качество эмульсионных слоев для измерения импульсов.

Поиск случаев взаимодействия производился вдоль следов первичных дейтронов. Фиксировались все события, включая случаи рассеяния дейтронов на угол больше 0,1^о в плоскости фотоэмульсии. На длине 557,5 м следов дейтронов было обнаружено 2410 событий из них 2074 звезд с числом лучей ≥ 2. Для этих взаимодействий средний свободный пробег < L >_{>2} =

=26,9±0,6 см. Для определения среднего пробега неупругих столкновений дейтронов с ядрами фотоэмульсии необходимо учесть также однолучевые звезды, исключив из них случаи упругого рассеяния дейтронов. Если рассчитывать последние как ядерное рассеяние точечной частицы на сферическом абсолютно черном ядре/2/, то

$$\left(\frac{d\sigma}{d\omega}\right)_{A} = \frac{R_{A}^{2} \left| J \left(kR \theta \right) \right|^{2}}{\theta^{2}} . \tag{1}$$

Из формулы (1) следует, что для среднего ядра эмульсии упругое рассеяние практически несущественно при углах больше 1°. Угловое распределение однолучевых звезд приведено на рис. 2. В соответствии с этим рисунком доля однолучевых звезд, в которых частицы рассеялись на угол > 1°, составляет 30%.

Для выделения неупругих взаимодействий другим способом на следах вторичных частиц в однолучевых звездах производились измерения импульсов с помощью многократного кулоновского рассеяния координатным методом. Измерения были произведены на 72-х следах частиц. Результат измерений приведен на рис. 3, где наблюдаются две группы частиц. Местоположение максимума при большем импульсе совпадает с центром распределения первичных дейтронов на рис. 1. В соответствии с этим доля однолучевых звезд за счёт вклада упругого рассеяния составляет около 2/3. Остальная часть случаев имела импульсы в интервале 1,5-6 Гэв/с, следовательно, они могут быть отнесены к однолучевым звездам от неупругих взаимодействий. Вводя поправку, мы получаем, что средний свободный пробег < L, > равен:

 $< L_{1} > = (25,5 \pm 0,8)_{CM}$.

К ядерному стриппингу дейтронов мы относим процесс такого столкновения дейтронов с ядром, в котором только нейтрон испытывает неупругое взаимодействие, приводящее к образованию звезды. Для этого процесса следует ожидать узкое угловое распределение протонов, обусловленное в основном фермиевским движением нуклонов в дейтроне, и импульсное распределение, имеющее максимум при половине импульса дейтрона. Изме-

рения углов на следах 662 релятивистских частиц приведены на рис. 4. Для сравнения на рис. 5 приведено угловое распределение релятивистских частиц при взаимодействии протонов 6,2 Гэв/с из работы^{/3/} и 8,7 Гэв/с из работы^{/4/}. Сопоставление рис. 4 и рис. 5 показывает наличие большого эффекта ядерного стриппинга дейтронов.

Далее были проведены измерения импульсов на следах релятивистских частиц, имевших углы до 5°. Результаты этих измерений показаны на рис. 6. Импульсное распределение имеет максимум при половине импульса дейтрона. Оценка вклада фона в стриппинг была проведена по угловому распределению на рис. 4 и рис. 5. Как следует из этих рисунков, распределение быстро спадает, что также согласуется с расчётом стриппинга дейтронов на ядрах углерода, вычисленного на основе волновой функции Хюльтена, которая описывает внутренее движение нуклонов в дейтроне (рис. 7). В соответствии с этим доля фоновых частиц в области углов стриппинга составит 0,3±0,1, а доля для стриппинга с вылетом протонов w ст =0,22± 0,04.

Интересно сопоставить характеристики звезд, содержащих или не содержащих протон от стриппинга дейтронов. В таблице приведена средняя множественность релятивистских (n_s) и следов от расщепления ядер (n_b).

1 a Ovin Ha	Т	a	б١	пи	ц	а
-------------	---	---	----	----	---	---

یہ برعا ہے جاتا ہے جات	Звезды от в дейтронов, в стрипп	заимодействия которых инг	Звезды от взаимо действия протоно 8,7 Гэв	
ويورونين المراجع	есть	Het	النابي الالالاي بينيانا اليالياني الالاي بينانا الرواني	
<ns></ns>	2,6 ± 0,1	3,3 ± 0,I	3,2 ± 0,2	
< h _h >	5,I ± 0,I	8,5 ± 0,I	7,7 ± 0,2	

В таблице приведены также аналогичные данные для взаимодействия протоноь с ядрами фотоэмульсии при энергии 8,6 Гэв^{/4/}. Таблица указывает на существенное отличие звезд со случаями стриппинга. Это легко понять, так как вылет протонов из ядра без взаимодействия, очевидно, приводит к меньшему выделению энергии в ядре, и, следовательно, к меньшему числу генерированных частиц и более слабому развитию внутриядерного каскада.

Оценим сечение протонного стриппинга $\langle \sigma_{d,p} \rangle$ на ядре фотоэмульсии без учёта взаимодействий с водородом, доля которых ~ 4%. Оно, очевидно, равно произведению сечения неупругого взаимодействия со средним ядром фотоэмульсии $\langle \sigma_{ln} \rangle$ на долю w _{ст} стриппинга с вылетом протона, найденную в опыте. Сечение неупругого взаимодействия дейтрона с ядром меньше суммы аналогичных сечений для протона и нейтрона вследствие некоторого экранирования их друг с другом, что учитывается так называемой поправкой Глаубера. На основании экспериментальных данных $\delta_r \sim 0.03^{/5/}$. При импульсах ≥ 5 Гэв/с полные сечения взаимодействия протонов и нейтронов в любых комбинациях практически равны, следовательно, среднее сечение неупругого взаимодействия дейтронов с ядрами фотоэмульсии $\langle \sigma_{ln} \rangle$ равно:

$\langle \sigma_{ln} \rangle = \{ 2 \sum_{A} n_{A} \sigma_{A} / \sum_{A} n_{A} \} (1 - \delta_{r}) ,$

где σ_A - сечение для ядра с атомным весом A , n_A - число ядер. Используем данные работы⁶ для сечений взаимодействий протонов 5 Гэв/с с ядрами C , Cu , Cd (σ_c =250 мб, σ_{Cu} =800 мб, σ_{Cd} =1160 мб) изакон $A^{2/3}$ для расчёта сечений взаимодействия с ядрами N , O , Ag , Br . На основе этих данных, применяя формулу (2), получаем: $\langle \sigma_{in} \rangle$ = = 1150 мб, причём среднее ядро фотоэмульсии соответствует $\langle A \rangle$ =47. Следовательно, $\langle \sigma_{d,p} \rangle$ =1150 , w_{CT} =253+35 мб. На основании этого, а также рис. 4 можно рассчитать дифференциальные сечения стриппинга на среднем ядре фотоэмульсии. Они показаны на рис. 8.

Сравним полученные результаты с исследованиями стриппинга антидейтронов 13,3 Гэв/с.

В работе^{/7/} получено интегральное распределение стриппинга антидейтронов на ядрах углерода в зависимости от угла вылета протона.

Аналогичную кривую можно построить на основании наших данных. Эти распределения приведены на рис. 9, причём они нормированы при угле θ = 13 мрад.

Отличие нашей экспериментальной кривой при больших углах может быть связано с рассеянием протонов в ядрах Ag и Br, , а также несколько большим импульсом антидейтронов.

В заключение авторы выражают благодарность инженерно-техническому. коллективу синхрофазотрона ЛВЭ, и особенно И.Б. Иссинскому и В.И. Морозу, коллективу ИТЭФ, совместно с которым выполнялась работа^{/1/}, за ряд полезных обсуждений, а также лаборантам, проводившим поиск событий и измерения.

Литература

- 1. Н. Далхажав и др. Труды IV Международной конференции по физике высоких энергий и структуре ядра, Дубна, 1971.
- 2. V.Frahn, R.Venter. Annals of Phys., 24, 245 (1963).
- 3. H.Winzeler et al. Nuovo Cimento, 17, 8 (1960).

4. В.С. Барашенков и др. Препринт ОИЯИ, Р-331, Дубна, 1959.

5. Ю.П. Горин и др. Препринт ИФВЭ СЭФ-71-100.

6. В.С. Барашенков, К.К. Гудима, В.Д. Тонеев. Препринт ОИЯИ, Р2-4183, Дубна, 1968.

7

7. Ю.П. Горин и др. ЯФ, 13, 344 (1971).

Рукопись поступила в издательский отдел 14 апреля 1972 года.

8

۰.

0,997

Q996

Q999

50

