29/x1-717. B-655 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна **P1** 6051 4063/2-72 171 in the second

<u>И.Войтковска</u>, В.С.Евсеев, Т.Козловски, В.С.Роганов

ЭНЕРГЕТИЧЕСКИЕ СПЕКТРЫ НЕЙТРОНОВ. ИЗ РЕАКЦИИ ПОГЛОЩЕНИЯ ОТРИЦАТЕЛЬНЫХ МЮОНОВ ЯДРАМИ КИСЛОРОДА, КАЛЬЦИЯ И СВИНЦА

1971

RAEPHDIX IPOGAEM

RHGOTAO BAS

P1 - 6051

И. Войтковска¹, В.С. Евсеев, Т. Козловски¹, В.С. Роганов

ЭНЕРГЕТИЧЕСКИЕ СПЕКТРЫ НЕЙТРОНОВ ИЗ РЕАКЦИИ ПОГЛОЩЕНИЯ ОТРИЦАТЕЛЬНЫХ МЮОНОВ ЯДРАМИ КИСЛОРОДА, КАЛЬЦИЯ И СВИНЦА

Направлено в ЯФ

Объедененный ехотнут ядерных есспедозаний БИБЛИОТЕНА

Институт ядерных исследований, Сверк (ПНР)

Введение

Целью большого количества экспериментальных работ в области ядерного мю-захвата в течение длительного времени было определение вариантов слабого взаимодействия для этого процесса. Однако попытки получить на основе результатов этих экспериментов количественную информацию о константах слабого взаимодействия не всегда оказывались успешными ввиду недостаточной изученности физики ядерного мю-захвата.

Несколько лет назад была предложена гипотеза ⁽¹⁻³⁾, согласно которой основную роль в процессе ядерного мю-захвата играет возбуждение квазисвязанных состояний промежуточного ядра, являющихся изотопическими аналогами состояний гигантского резонанса ядра-мишени. То обстоятельство, что рассчитанные по этой модели значения полных вероятностей или некоторых переходов при мю-захвате находятся в хорошем согласии с экспериментальными данными, является косвенным доказательством ее пригодности для количественного описания обсуждаемой ядерной реакции

В^{/1/} была также высказана гипотеза о способах распада квазисвязанных состояний промежуточного ядра. Согласно этой гипотезе энер-

гия таких состояний может (по крайней мере, для случая легких ядер) сконцентрироваться на одном нуклоне, чаше всего на нейтроне. Рассчитанные в рамках такого подхода энергетические спектры нейтронов имеют характерную линейчатую форму, где каждая линия соответствует переходу между одним из квазисвязанных состояний промежуточного ядра и одним из состояний конечного ядра, образующегося в результате вылета нейтрона.

При исследовании энергетических спектров нейтронов в работах, выполненных до 1969 года ^{/6,7,8/}, предсказываемая теорией структура спектров обнаружена не была. Это могло быть связано с недостаточно хорошим энергетическим разрешением используемых в этих работах спектрометров нейтронов.

Целью настояшей работы явилось экспериментальное исследование нейтронных спектров в интервале энергии (2+13) Мэв из реакции ядерного мю-захвата в кислороде, сере, кальции и свинце с помощью спектрометра ^{/9/}, имеющего более высокое энергетическое разрешение. Предварительные результаты опубликованы в ^{/10,11/}.

<u>Методика</u>

Работа выполнена на чистом мюонном пучке ^{/12/} с импульсом 158 Мэв/с, полученном с помощью мезонного канала синхропиклотрона Лаборатории ядерных проблем ОИЯИ. Расположение аппаратуры показано на рис.1. Мюоны проходят через могиторные счетчики 1 и 2 (100x x100x10 мм³), тормозятся в графитовом поглотителе и, проходя счетчик 3 (80x80x2 мм³), останавливаются в мишени; остановки выделяются с помощью счетчика антисовпадений 4 высотой 120 мм по счету 1234.

Мишени из дистиллированной воды в тонком контейнере из пенополистирола, плавленной серы, металлического кальция и металлического свинца имели площадь 100х100 мм² и толщину в направлении нейтронного спектрометра, соответственно, 2,4,4 и 6 г/см². Первые три мишени

Рис. 1. Расположение аппаратуры на мезонном пучке.

располагались так, как указано на рис.1, мишень из свинца располагалась под 45[°]к оси пучка.

В качестве детектора нейтронов применялся кристалл стильбена диаметром 30 мм и толщиной 20 мм с фотоумножителем 56 AVP /9/ Для разделения нейтронов и гамма-квантов использовался метод дискриминации по форме импульса /9,13/

Логика блок-схемы электронной аппаратуры была такова, что нейтроны из кислорода, серы, кальция и свинца регистрировались в течение, соответственно, 2,1,1 и 0,3мксек спустя 0,05мксек после остановки мезона. В канале выделения остановок мюонов и в канале нейтронного спектрометра использовались схемы блокировки, запрещающие прохождение импульсов (по отдельности в каждом из каналов), если расстояние между ними во времени было меньше 6 мксек. Совпадения во времени между импульсами нейтронного детектора и импульсами µ⁻ остановок запускали многоканальный амплитудный анализатор (АИ-4096), работающий в двумерном режиме, с помощью которого одновремению измерялись спектры протонов отдачи и электронов от у -квантов.

Энергетическая калибровка нейтронного спектрометра осуществлялась с помощью y -источников, источника нейтронов (Po-Be) и монохроматических нейтронов из реакций $d(t,n)_{\alpha}$ и π + p + n + y. Абсолютная точность энергетической шкалы для нейтронов \pm 5%, долговременная нестабильность амплитуды в спектрометрическом канале не более \pm 1%. Аппаратурное энергетическое разрешение ΔE_p , характеризующее спектр протонов отдачи (полная ширина на половине высоты пика), за длительный период работы составляло 0,4 \pm 0,1; 0,5 \pm 0,1 и 0,6 \pm 0,1, соответственно, для энергии протонов отдачи 2;5 и 12 Мэв.

Измерения

Для идентификации нейтронов от реакции ядерного µ⁻-захвата снималось распределение во времени (после остановки мюона) случаев

регистрации нейтронов из всех четырех мишеней. Полученные значения времени жизни мезона в этих веществах совпадают с измеренными другими авторами. Фон случайных совпадений составил 17% для случая кислорода и несколько процентов эффекта в других веществах.

В отсутствие мишени регистрировалось заметное количество остановок и помимо фона случайных совпадений наблюдался фон, зависящий от времени (время жизни около 2мксек); его вклад в нуле времени составлял в рабочих условиях примерно 0,8 фона случайных совпадений.

Для того чтобы учесть фон, зависящий от времени, и не искажать фон случайных совпадений (что особенно важно в случае кислорода), мы периодически производили измерения суммарного фона в тех же временных интервалах, что и эффекта, с гидридом лития высокой чистоты в качестве мишени. Вероятность μ^- -захвата в литии столь мала ^{/4/}, что фон нейтронов от этого процесса можно считать пренебрежно малым для случая мю-захвата в кислороде.

Скорость остановок изменялась от $3 \cdot 10^3$ до $1,2 \cdot 10^4$ сек⁻¹ для разных мишеней, скорость (μn) - совпадений составляла в среднем несколько десятков в секунду. Поправка на примесь γ -квантов для самой низкой энергии протонов отдачи в течение всего времени измерений не превышала долей процента. На рис.2 показана часть спектра (γ -n)-раздоления для протонов отдачи двух энергий, полученного в одном из сеансов. Счет в пике γ -квантов в несколько десятков раз превышает счет в нейтронном пике.

Обработка и результаты измерений

Аннаратурные спектры протонов отдачи разбивались на энергетичоские интервалы через 0,25 Мэв (или на интервалы через 0,125 Мэв в

Рис. 2. Разделение нейтронов и у - квантов для двух значений энергии протонов отдачи.

Рис. 3. Энергетический спектр протонов отдачи для Случая μ^- - захвата в кальции.

диапазоне < 5,25 Мэв для случая серы). В качестве примера на рис.3 приведен суммарный (по всем сеансам) энергетический спектр протонов отдачи за вычетом фона, измеренного с *LiH*, для случая кальция.

Задача определения неизвестного энергетического спектра нейтронов по спектру протонов отдачи детально исследовалась многими авторами. В работе ^{/14/} показано, что метод получения спектра нейтронов путем дифференцирования протонного спектра при выполнении ряда условий приводит к минимальным погрешностям. Необходимые условия для успешного применения данного метода – малые размеры сцинтиллятора, подходящий интервал энергии нейтронов – выполнены в использованном нами спектрометре нейтронов ^{/9/}. Формально дифференцирование протонного спектра осуществлялось путем ^{/15/} проведения отрезка параболы через 2p' + 1 точек (p' = 1, 2, ...) протонного спектра и нахождения значения производной в средней точке.

Такая процедура приводит к некоторому сглаживанию неоднородностей в спектре протонов, т.е. к дополнительному уширению нейтронной линии на величину

$$H \simeq \frac{2}{3} \left(2p' + 1 \right) a'$$

(a' - ширина энергетического диапазона в энергетическом спектре протонов отдачи).

Эта процедура дифференцирования была опробована ^{/9/} для случая нашего спектрометра на монохроматических нейтронах разной энергии и нейтронах из (*Po*-*Be*).

На рис.4 + 7 приведены энергетические спектры нейтронов из реакции ядерного мю-захвата, полученные указанным выше способом, а на рис.8 - спектр фона, снятый с *Lill* в качестве мишени.

Для случая µ -захвата в сере производная определялась по пяти точкам во всем диапазоне энергий; для остальных ядер в диапазоне

Рис. 4. Энергетический спектр нейтронов из реакции ядерного μ^- - захимта в кислороде.

Рис. 6. Энергетический спектр нейтронов из реакции ядерного µ⁻ - захвата в кальции.

Рис. 7. Энергетический спектр нейтронов из реакции ядерного μ^- - зах-вата в свинце.

< 5,25 Мэв производная определялась по трем точкам, а для > 5,25 Мэв по пяти.

Энергетическое разрешение ΔE_n и статистическая точность в спектре нейтронов хуже, чем для протонов отдачи, что связано с потерями информации в процессе обработки. Зависимость от этих параметров для нашего спектрометра ^{/9/} приведена на рис.9.

Поправки на двойное рассеяние нейтронов в кристалле стильбена, на ядерные реакции с ядрами углерода, на неупругое рассеяние нейтронов в мишенях, на краевые эффекты, на анизотропию упругого (*np*) – рассеяния и на зависимость амплитуды сцинтилляции от угла падения нейтрона относительно оси монокристалла стильбена были пренебрежимо малы ^{/9/}.

Обсуждение результатов

<u>Кислород</u>, Наибольший интерес для теории ядерного мю-захвата представляют экспериментальные данные, полученные для легких ядер, поскольку высоковозбужденные квазисвязанные состояния, например, ¹² С или¹⁶ О изучены довольно хорошо в других ядерных реакциях /5,16,17/

Энергетический спектр нейтронов из реакции ядерного мю-захвата в ^{16}O был рассчитан в работах $^{/1,18/}$ на основе представлений о доминирующей роли возбуждения квазисвязанных состояний промежуточного ядра, но с использованием различных моделей для описания их природы. Общим для всех этих расчетов является предсказание о преобладании в спектре нейтронов линий, соответствующих переходам из состояний O^- , 1^- , 2^- промежуточного ядра ^{16}N в основное состояние конечного ядра ^{15}N .

В /19/ спектр нейтронов рассчитан по теории, единым образом учитывающей прямые и резонансные процессы. Резонансная структура получаемого таким образом нейтронного спектра, которая при подходе, исполь-

зуемом в работе /18/, возникала как следствие предположения о резонансном возбуждении ядра при µ⁻ -захвате, является результатом взаимной связи различных каналов и коллективизации возбуждений ядра в области непрерывного спектра.

С нашими экспериментальными данными (см.рис.4) наилучшим образом согласуется спектр, рассчитанный в /18/ на основе описания квазисвязанных состояний по модели Гольдхабера-Теллера с учетом спин-изоспиновых состояний. Положение трех основных квазисвязанных состояний 16 N получено путем сдвига на 2,5 Мэв состояний гигантского дипольного резонанса в 160. Приведенные в работе /18/ значения энергии этих состояний, равные 20,0 (2); 22,0 (1) и 24,5 Мэв (1) хорошо совпадают с теми (20,2; 22,2 и 24,2 Мэв), которые получаются из экспериментов по спектрам фотонейтронов . по сечению фотопоглошения, реакций ¹⁵ N (p, y)¹⁶ О или неупругого рассеяния электронов Если задать энергию основных линий в нейтронном спектре (Е =2,9; 4.6 Мэв и 6.6 Мэв) в соответствии с результатами работы и пренебречь возможным вкладом непрерывного спектра, то полученный нами спектр можно с помощью метода наименьших квадратов разложить на отдельные линии гауссовой формы.

Учитывая значение абсолютного выхода нейтронов для этой энерготической области, равное 0,53 \pm 0,07 ^{/20/}, можно определить (см.таблицу 1) значения вероятности W_n испускания нейтронов для каждой из вышеуказанных линий в спектре нейтронов. Для более полного описания экспериментального спектра следует добавить слабую линию с энергиой $E_n = 5,5$ Мэв. Этой линии может соответствовать, например, переход с энергией 5,3 Мэв из квадрупольного состояния 2⁺ (E=29,5 Мэв) ядра ¹⁶ N ^{/18/} в одно из состояний 1/2⁺, 5/2⁺ ядра ¹⁵ N . Заселение этих состояний ядра ¹⁵ N , запрещенное в чистой частично-дырочной модели /^{21/}, происходит в 15% случаев полной вероятности распада квазисвязин-

Таблица І

En, Nob	Wn (экспер.)	Г , Ж эв(экспер.)	Г, Мэв (аппарат.)
2,9	0,23 <u>+</u> 0,06 ^{*)}	, 1,9 <u>+</u> 0,3	0,60-0,70
4,6	0,12 <u>+</u> 0,03	0,5 <u>+</u> 0,I	0,65-0,75
5,5	0,06 <u>+</u> 0,02	0,7 <u>+</u> 0,2	0,90-1,05
6,6	0,12 <u>+</u> 0,03	1,1 <u>+</u> 0,2	0,90-1,05

ы) участок с Е n > 2,25 Мэв; для всей линии $W_n = 0,27\pm0,07;$ $g^2 = 20$ при числе степеней свободы, равном 14.

ных состояний ¹⁶ N, что объясняется как вкладом переходов более высокой степени запрета, так и тем обстоятельством, что, например, основное состояние ¹⁶ O представляет собой не чистую конфигурацию $1s)^4(1p)^{12}$, а включает примеси $(1p)^{-2}(1d_{s/2})^2$ или $(1p)^{-2}(2s_{1/2})^2$ состояний. Аналогичная ситуация имеет место в случае фотоядерных реакций

Значение ₩ =0,27±0,07 для линии с Е =2,9 Мэв не противоречит абсолютным значениям вероятности W_v испускания у -квантов на акт мю-захвата (E_{ν} =6,322 Мэв) /21,23/ при переходе из состояния =0,25<u>+</u>0,023)^{/21/} и (W =0,20<u>+</u>0,05) ^{/23/}, что мо-(17, 3/2 ядра ¹³ N жет служить подтверждением правильности схемы распада, предложенной в работе /18/. Следует отметить, что значение ₩_ для этой линии может быть завышено, поскольку не учтен участок спектра меньших энергий. Измеряемая ширина этой соответствующей у -линии, обусловленная допплеровским уширением, не противоречит представлению о заселении состояния путем испускания нейтронов с Е =2,9 Мэв /21/. Экспериментальное Значение вероятности этого л, у каскада не противоречит расчетам W теор. \approx 0.3 /18/ на основе обсуждаемой модели ядерного μ^- -захвата.

Вид энергетического спектра нейтронов, рассчитанного в работе /19/, похож на тот, который следует из работы /18/, и на полученный нами, хотя для правильного сравнения необходимо учесть допплеровское уширение нейтронных линий /25/.

Энергетический спектр нейтронов от мю-захвата в¹⁶0 был недавно измерен в ^{/26/}. В этом спектре также заметны отдельные линии, соответствующие наблюдаемым нами, однако, они выражены менее четко. Основное отличие спектра работы ^{/26/} от полученного нами состоит в том, что выход нейтронов в области малых энергий заметно больше для спектра из ^{/26/}. Авторы этой работы полагают, что возрастание количества нейтронов малой энергии по сравнению с предсказанным теорией связано

с вкладом спектра нейтронов испарения. Однако расхождение в области малых энергий может быть обусловлено некорректным учетом фона в работе ^{/26/}, поскольку в отличие от нашей работы ее авторами учитывался только фон случайных совпадений, а также тем, что процедура дифференцирования протонного спектра в случае больших детекторов, используемых в работе ^{/26/}, приводит к существенному искажению нейтронного спектра в области низких энергий.

Спектр нейтронов, полученный нами, не содержит заметного вклада испарительных нейтронов и в этом смысле согласуется со спектром фотонейтронов из ${}^{16}O$ /16/. Глубокая аналогия между процессами испускания фотонуклонов и вылета нейтронов при ядерном μ^- -захвате демонстрируется также в экспериментах по заселенности связанных состояний конечных ядер в каждой из этих реакций

Сера и кальций. Энергетические спектры нейтронов от и - захвата и 40 Са имеют вид. отличный от того, который получен в случае S кислорода. В обоих спектрах наблюдаются особенности типа отдельных линий или широких полос на подложке из непрерывного спектра. Если считать, что она имеет форму испарительного спектра /27/ (N_ ≈ $\approx E_exp[-E_/T]$, где T – температура конечного ядра), то можно чисто условно разделить спектры от μ^- -захвата в ³² S и ⁴⁰ Ca на две части путем проведения кривых испарительного спектра по минимумам особенностей в спектрах (см. пунктирные линии на рис.5 и 6. предполагая для конечных ядер ³¹ Р и ³⁹ К температуры, соответственно, 1,7 и 1,5 Мэв). Такие значения ядерной температуры характерны /27,28/ пля энергии возбуждения ≈ 20 Мэв, имеющей место в процессе µ- -захвата на средних ядрах. При таком предположении "линейчатый" спектр составляет в случае серы примерно 0,32 всего выхода нейтронов в интервале (1.50 - 12,75) Мэв или /20/ 0,14 от полной вероятности и -задля случая кальция эти цифры, соответственно. ≈ 0.1 и ≈ 0.03 XBATA: для интервала (2,0 - 13,0) Мэв.

Спектр нейтронов от "--захвата в кальции измерялся в работе в условиях худшего энергетического разрешения. Форма спектра, полученного в этой работе, близка к данным нашего эксперимента, если произвести усреднение наших данных по достаточно большому энергетическому интервалу, однако значение ядерной температуры, полученное в для случая µ⁻-захвата в ⁴⁰ Са, несколько больше; возможно, это связано с тем. что в весь спектр в области малых энергий считается испарительным. В спектре нейтронов от фотопоглощения в сере из измеренном таким же методом, как и в данной работе, соотношение линейчатой и испарительной частей спектра, а также температура ядра примерно такие же, как и в случае µ- -захвата. Интерпретацию спектра в случае серы можно попытаться осуществить путем сравнения с данны-/31,32/ Если ми по фотопоглощению /31/ и испусканию фотонейтронов считать, что при µ -захвате в³² S происходит возбуждение состояний ядра 32 Р, повторяющих энерготический спектр состояний ядра 32 S но сдвинутых на 5,3 Мэв относительно последних, то можно получить значения энергии нейтронов в спектре от // -захвата, приведенные в табл. II. При таком подходе наилучшим образом структуре особенностей в полученном нами спектре соответствует предположение об определяюшем вкладе переходов в основное состояние ядра 31 Р. Аналогичный /30,33/ πο вывод делается практически во всех работах (см., например, спектрам фотонейтронов. Однако формально нельзя исключить вклада переходов в возбужденное состояние ³¹ р, тем более, что первые два заселяются с большей вероятностью (см. работу /34/). Широкий максимум в области 9+12 Мэв невозможно описать только переходами в основное состояние в рамках данных табл. //, поскольку его ширина не исчерпывается линиями 9,2 и 10,5 Мэв. Однако в некоторых работах (см. указывается на существование состояния с энергией 27 Мэв в спектре

Taganua II

GEODTHE 32 5 /31/, Mab E)	. I6,7	17,5	I8,I	I9,6	2I,6	22,4	23,5	25, 4	30,0
Guepras 32 ^p , 168 x) coctoseat 32 ^p , 168 x)	11,	I2 , 2	12,8	I4,3	I6,3	17,1	18 , 2	20,1	24,7
Зекергия нейтронов при прреходе из состояний 32 в различие сос- тобныя ³¹ Р. Изв:									
	I,8	2,6	3,2	4,7	6,7	7,5	8,6	I0,5	I5,I
B COCTORENE I,266 Las	0,5	I,3	I,9	3,4	5,4	6,2	7,3	9,2	I3,8
B COCTORNA 2,232 Mas		0,4	0,1	2,5	4,5	5,3	6,4	8,3	I2,9

Энергия отсчитывается от основного состояния 32 S

 ${}^{32}S$, что дает для спектра нейтронов от μ^- -захвата линии 12,1;10,8 и 9,9 Мэв. Следует отметить, что приведенный в табл. *II* спектр высоковозбужденных состояний ${}^{32}S$ хорошо описывает линейчатый спектр фотонейтронов из ${}^{32}S$ /30,33/.

Остается добавить, что оценки сдвига между состояниями ${}^{32}P$ и ${}^{32}S$ приводят к цифре 5,1 Мэв, что близко к 5,3 Мэв, используемой для наилучшего согласования наблюдаемого спектра нейтронов от μ^- -за-хвата в ${}^{32}S$ со спектром состояний гигантского дипольного резонанса в ${}^{32}S$.

Спектр нейтронов из кальция содержит гораздо меньше особенностей и поэтому детальное сравнение с данными по фотопоглощению невозможно.

Следует указать на глубокую аналогию между процессами фотовозбуждения и μ^- -захвата, проявляющуюся в одинаковой картине заселенности возбужденных состояний ядра ³⁹ K , полученной при сравнительном изучении γ -спектров из реакций ${}^{40}Ca(\gamma, p \gamma^1){}^{39}K \; {}^{40}Ca(\mu^-, \gamma n){}^{39}K / {}^{35,36/}$ Отметим, что переходы во все возбужденные состояния 39 K составляют /34,36/ около 15% полной вероятности μ^- -захвата в 40 Ca .

Расчеты по модели независимых частиц предсказывают наибольшие вероятности переходов в состояния $If_{7/2}(Id_{5/2})^{-1}$ промежуточного ядра (векторные переходы V), формирующие состояние 1 – гигантского резонанса и в состоянии $If_{5/2}(Id_{5/2})^{-1}$ (аксиальные переходы A), формирующие триплет состояний 0, 1, 2. Согласно расчетам ^{/38/}, энергии состояний этого триплета равны 21,7 (2 A); 22,6 (1 A); 23,6 Мэв (0 A) для ³² S и 21,0 (2 A), 22,2 (1 A), 23,1 (0 A) Мэв для ⁴⁰ Ca ; расчетное положение этих уровней достаточно хорошо согласуется с тем, которое следует принять для интерпретации данных по энергетическим спектрам нейтронов из реакции ядерного μ^- -захвата в сере.

Для однозначного определения структуры переходов с испусканием нейтронов и энергетического спектра высоковозбужденных квазисвязан-

ных состояний промежуточного ядра при µ⁻ -захвате необходимы эксперименты по исследованию энергетической корреляции спектров нейтронов и у -квантов (испускаемых при заселенности состояний конечного ядра).

Из-за остаточного взаимодействия состояния "одна частица – одна дырка" (1p - 1h) могут образовать новую пару квазичастиц, т.е. существует конечная вероятность образования состояний (2p - 2h), являющихся "проходными" состояниями (doorway states) для более сложных конфигураций. Вероятность такого процесса зависит от плотности (2p - 2h)состояний, которая растет с ростом А; именно этим обстоятельством можно объяснить уменьшение вклада "линейчатой" структуры при переходе от серы к кальцию.

<u>Свинец</u>. С точностью до статистических ошибок в этом спектре не наблюдается "линейчатая" структура. Две четко разделяемые области спектра могут быть связаны с распадом состояний гигантского резонанса через составное ядро и путем прямого вылета нейтрона. Аналогичная структура спектра обнаружена в случае взаимодействия монохроматических фотонов с висмутом ^{/39/}. Область малых энергий хорошо описывается выражением

$$N(E_n) \approx E_n^{5/11} e^{xp} \left[- E_n^{12} / T_{9\phi\psi}^{11} \right]$$

(пунктирная кривая на рис. 7), относящимся к процессу испарения нескольких нейтронов ^{/37/}. Среднее число нейтронов для случая μ^- -захвата в свинце $\approx 1,5$ ^{/20,29/}. Полученное нами значение эффективной температуры $T_{9\phi\phi} = 1,15 \pm 0,20$ находится в хорошем согласии с величиной $T_{9\phi\phi} = 0,9$ Мэв, найденной для нейтронов из фотоядерной реакции на свинце и величиной $T_{9\phi\phi} = 0,96$ Мэв для ²⁰⁸ Tl ^{/28/} в аналогичной реакции. Форма спектра, полученного нами, хорошо совпадает с данными работы ^{/6/}.

Основные выводы

 Измерены энергетические спектры нейтронов из реакции ядерного μ⁻ -захвата в кислороде, сере, кальции и свинце в интервале энергии 1,5 - 13,0 Мэв.

2. В спектре нейтронов для случая кислорода, серы и кальция наблюдаются неоднородности типа отдельных линий или широких полос, расположенные на подложке, имеющей характер "испарительного" спектра.

3. Наблюдение линейчатой структуры нейтронных спектров подтверждает гипотезу о доминирующей роли в реакции ядерного µ⁻ -захвата переходов с возбуждением квазисвязанных состояний промежуточного ядра, являющихся изотопическими аналогами состояний гигантского дипольного резонанса ядра-мишени.

4. Нерегулярности в спектре нейтронов имеют ширины, близкие к аппаратурным: поэтому последние могут рассматриваться в качестве верхнего предела для "естественной" ширины неоднородностей в нейтронном спектре.

5. Вклад "испарительного" спектра растет с ростом атомного номера так же, как это имеет место в спектрах фотонейтронов.

6. Сравнение структуры нейтронных спектров от µ⁻ -захвата в кислороде, сере и кальции с соответствующими экспериментальными данными по сечениям фотопоглощения и неупругого рассеяния электронов, испускания фотонейтронов, по энергетическим спектрам фотонейтронов показывает, что все эти данные не противоречат друг другу, если учесть наличие кулоновского сдвига между квазисвязанными состояниями ядрамишени и промежуточного ядра, образующегося в результате первой стадии ядерного µ⁻ -захвата.

7. Сравнение экспериментальных данных по спектрам нейтронов от µ[•] -захвата с результатами теоретических расчетов показывает, что достаточно хорошее количественное согласие наблюдается только в случае кислорода. Для объяснения большого вклада подложки ("испарительный" спектр) необходимо ввести в теорию "размазывание" частично-дырочных состояний промежуточного ядра по более сложным состояниям вплоть до состояний составного ядра.

Литература

- 1. V.V.Balashov, V.B.Beliaev, R.A.Eramjian, N.M.Kabachnik. Phys.Lett., 9, 168 (1964).
- 2. J.Barlow, J.C. Sens, P. Duke, M.R. Kemp. Phys. Lett., 9, 84 (1964).
- 3. L.L.Foldy, J.D.Walecka. Nuovo Cimento, <u>34</u>, 1026 (1964).
- 4. В.А.Балашов, Р.А.Эрамжян. Препринт ОИЯИ, Р2-3258, (1967).
- 5. H.Uberall, Suppl. Nuovo Cimento, 4, 781 (1966).
- 6. D.E.Hagge. University of California, Radiation Laboratory, Report No. UCRL-10516 (1963).
- 7. R.M.Sundelin. Carnegie Institute of Technology, Pittsburh, Report CAR-882-22 (1967); R.M.Sundelin, R.M.Edelstein, A.Suzuki, K.Takahashi. Phys.Rev.Lett., <u>20</u>, 1198, 12ö1 (1968).
- 8. M.Krieger. Columbia University, No.4, Report NEVIS-172 (1969).
- 9. И.Войтковска, В.С.Евсеев, Т.Козловски, В.С.Роганов. Препринт ОИЯИ, Р13-6053, Дубна, (1971).
- 10. V.Evseev, T.Kozlowski, V. Roganov, J.Woitkovska. Phys.Lett., 28B, 553 (1969).
- 11. V.Evseev, T.Kozlowski, V.Roganov, J.Woitkowska. Proc.III Intern. Conf. on High Energy Phys. and Nucl. Structure, Plenum Press, N-Y-L, 1970, p.157.
- 12. В.Г.Варламов, Ю.М.Грашин, А.В.Демьянов, Б.А.Долгошеин, В.С.Роганов. Препринт ОИЯИ, 1-4084, Дубна (1968).
- 13. T. Kozlowski. Nucleonica, XIII, 999 (1968).
- 14. Г.Г.Дорошенко, В.И.Глаголев, И.Р.Барабанов, И.В.Филюшкин. Атомная энергия <u>16</u>, вып. 3, 218 (1964).

15. C.Lanczos. Appl.Analysis, Prentice Nall,Inc. (1965), p.321.

16. V.V.Verbinski, J.C.Courtney. Nucl.Phys. 73, 398 (1965)

17. F.Beck. Ref. II, P.40.

- 18. R.Raphael, H.Überall, C.Werntz. Phys.Lett., 24B, 15 (1967).
- 19. V.V.Balashov, G.Ya.Korenman, Nucl.Phys., <u>BI</u>, 158 (1967).

- 20. И.Войтковска, В.С.Евсеев, Т.Козловски, Т.Н.Мамедов, В.С.Роганов. Препринт ОИЯИ, Р15-5524, Дубна (1970).
- 21. S.N. Kaplan, R.V.Pyle, L.E.Temple, G.F.Valby. Phys.Rev.Lett., 22, 795 (1969).
- 22. R.O.Owens, J.E.E.Baglin.Phys.Rev.Lett., <u>17</u>, 1268 (1966).
- 23. Ю.Г.Будяшов, В.Г.Зинов, А.Д.Конин, С.В.Медведь, А.И.Мухин, Е.Б.Озеров, А.М.Чатрчян, Р.А.Эрамжян. ЖЭТФ, 58, вып.4, 1211 (1970).
- 24. S.N. Kaplan, R.V. Pyle, L.E. Temple, G.F. Valby. Ref. II, p. 163.
- 25. T.A.E.C. Pratt. Preprint 61761 Illinois State University (1970).
- 26. M.E.Plett, S.E.Sobottka. Phys Rev., C3, 1003 (1971).
- 27. V.Weisskopf. Phys.Rev., <u>52</u>, 295 (1937).
- 28. A.Gilbert, A.G.Cameron, Canad, Journ., Phys., <u>43</u>, 1446 (1965).
- 29. B.Macdonald, J.A.Diaz, S.N. Kaplan, R.V.Pyle. Phys.Rev., <u>139B</u>, 1253 (1965).
- 30. N.Mutsuro, K.Kageyama, M.Mishina, E.Tanaka, T.Aizava, M.Kimura. Journ.Phys.Soc.Japan, 18, No5, 599 (1963).
- Б.С.Долбилкин, А.И.Исаков, В.И.Корин, Л.Е.Лазарева, Ф.А.Николаев.
 Ядерная физика, 8, вып.6, 1080 (1968)
- 32. Б.И.Горячев, Б.С.Ишханов, В.Г.Шевченко, Б.А.Юрьев. Ядерная физика, 7, вып. 6, 1168 (1968).
- 33. F.W.K. Firk. Nucl. Phys., 437 (1964).
- 34. T.A.E.C. Pratt. Nuovo Cimento, <u>61B</u>, 119 (1969).
- 35. H.Uberall, H.Krauth, Nucl.Phys., A 123, 641 (1969).
- 36. P.Igo-Kemenes, J.P.Deutsch, D.Favort, L.Grenacs, P.Lipnik, P.C.Macq. Preprint Univ. de Louvain, Heverlee-Louvain, Belgium (1971).
- 37. K.J.Le Couteur. Proc.Phys.Soc., <u>A63</u>, 259 (1950); <u>A65</u>, 718 (1952).
- 38. T.W.Donelly, G.E.Walker, Ann. of Phys., <u>60</u>, 203 (1970).
- 39. F.F.Kuchnir. Phys.Rev., <u>161</u>, 1236 (1967).

Рукопись поступила в издательский отдел 30 сентября 1971 года.