5-287 объединенный институт ядерных ИССЛЕДОВАНИЙ Дубна. 3214 /2-71

P1 - 5893

13/9-71

Ю.А.Батусов, С.А.Бунятов, В.А.Вартанян, Г.Р.Гулканян, Н.Курц, В.М.Сидоров, Х.М.Чернев, Р.А.Эрамжян, В.А.Ярба

исследование реакции μ^{-12} с - 8 Li ³ He n ν

1971

JAEPHDIX NPOSAE

AAS ONTO PNG

P1 - 5893

Ю.А.Батусов, С.А.Бунятов, В.А.Вартанян*, Г.Р.Гулканян**, Н.Курц***, В.М.Сидоров, Х.М.Чернев****, Р.А.Эрамжян, В.А.Ярба *****

ИССЛЕДОВАНИЕ РЕАКЦИИ $\mu^{-12}C - 8Li^{3}Hen^{3}V$

Направлено в ЯФ

Совениненани инснитут ппервых исследований ENGINAOTEKA

- Ереванский институт физики
- ** Ереванский государственный университет
- *** Центр ядерных исследований, Страсбург-Кроненбург
- **** Физический институт БАН, София
- ***** Институт физики высоких энергий (Серпухов).

Введение

Эксперименты по захвату µ -мезонов легкими ядрами служат источником информации о механизме захвата и структуре ядер. В таких исследованиях эффективно может быть использован метод ядерных фотоэмульсий, позволяющий с хорошей точностью измерять углы и энергии вторичных короткопробежных частиц и дать, таким образом, детальную информацию о процессе захвата.

Дополнительные преимущества имеют место при регистрации событий с характерными **Т**-образными следами, так как они могут быть отнесены только к надежно идентифицируемым остаточным ядрам: ⁸Li, ⁸B и ⁸He

До последнего времени при исследовании захвата μ^- -мезонов легкими ядрами лишь в реакции $\mu^- + {}^{3}He \rightarrow {}^{3}H+\nu$ удалось зарегистрировать ядро отдачи мюонного нейтрино. Впервые это было сделано с помощью диффузионной камеры на синхроциклотроне ОИЯИ ^{/2/}. В других работах каналы реакций либо не выделялись, либо регистрировались не сами ядра отдачи, а *у*-кванты или электроны от их распадов. В сообщалось о регистрации 9 случаев образования лития-8 во взаимодействиях двухлучевого типа, которые отнесены к реакции $\mu^{-12}C \rightarrow {}^{8}Li^{4}He_{+\nu}$, однако полный кинематический анализ этих событий не проводился.

В настоящей работе зарегистрировано 346 событий двухлучевого типа с **Т** -образным следом, проведен их кинематический анализ и выделен канал реакции захвата μ^- -мезона ядром ¹²С с образованием лития-8 в конечном состоянии.

Постановка эксперимента

Эмульсионные камеры размером 10 x 10 x6 см³, составленные из слоев эмульсии типа НИКФИ-БР толщиной 600 мк, облучались µ⁻-мезонами с энергией 80 Мэв в низкофоновой лаборатории на µ⁻-мезонном тракте синхроциклотрона ОИЯИ. Плотность облучения составляла 2.10⁵мезон/см². Мезоны тормозились медным фильтром толшиной 10г/см² и останавливались в середине эмульсионной камеры.

Для определения примеси π^- -мезонов в первичном пучке было измерено распределение числа σ -звезд (вдоль направления пучка) в зависимости от расстояния от края фотоэмульсионной камеры.

Зарегистрировано ≈ 300 σ-звезд различного типа. По импульсу первичного пучка была определена зона остановок π⁻-мезонов в эмульсионной камере. Из экспериментального распределения числа σ-звезд вдоль направления пучка (рис. 1) найдено, что примесь π⁻-мезонов в зоне остановок μ⁻-мезонов мала и не превышает 0,2%.

При захвате µ -мезонов ядрами в фотоэмульсии σ-звезды с двумя или более лучами образуются преимущественно на легких (C,N,0) ядрах ^{/4,5/}. К тому же выход ядер ⁸Li и ⁸B из тяжелых ядер фотоэмульсии (Ag, Br) сильно подавлен кулоновским барьером ^{/1/}.

Рабочий просмотр проводился в зоне остановок μ^{-} -мезонов шириной в 3 см (рис. 1); под микроскопом с увеличением 200 х регистрировались σ -звезды с **Т**-образными следами. В четырех эмульсионных камерах было зарегистрировано 677 таких σ -звезд. Для анализа отбирались

Рис. 1. Распределение σ -звезд по остаточному пробегу мезонов. Направление первичного пучка мезонов – слева направо. Стрелками показаны максимумы распределений по Гауссу для σ_{π} – и σ_{μ} – звезд. двухлучевые звезды, имеющие кроме **7**-образного следа след другой заряженной частицы (первичный µ⁻-мезон в данном случае не учитывается). Выделено и измерено 346 таких событий. Энергии заряженных частиц определялись по пробегам на основании таблиц, приведенных в работе ^{/6/}.

Экспериментальные результаты

7 - образные следы в фотоэмульсии дают ядра ⁸Li, ⁸B и ⁸He. Вклад ⁸He мал, и они могут быть выделены по двум электронам в точке распада ^{/7/}. Мы не нашли ни одного такого события.

Число возможных каналов реакций с образованием ⁸Li и ⁸B при захвате μ^{-} -мезонов легкими ядрами в фотоэмульсии сильно ограничено. Так, в случае образования ⁸Li возможны только следующие реакции двухлучевого типа:

$$\mu^{-} + {}^{12}C \rightarrow {}^{8}Li + {}^{4}He + \nu$$
 (1)

$$\rightarrow {}^{8}Li + {}^{3}He + n + \nu, \qquad (2)$$

$$\mu^{-} + {}^{14}N \rightarrow {}^{8}Li + {}^{6}Li + \nu, \qquad (3)$$

$$\mu^{-} + {}^{16}O \rightarrow {}^{8}Li + {}^{7}Be + n + \nu. \qquad (4)$$

Реакции с образованием ⁸В маловероятны по сравнению с ⁶Li, поскольку вылет ⁸В из ядер ¹⁴ N и ¹⁶О в реакциях двухлучевого типа всегда сопровождается испусканием трех или более нейтронов x/, что

^{x/}За исключением реакции $\mu^{-} + {}^{16}O \rightarrow {}^{8}B + {}^{6}He + 2n + \nu$, где образуется β -активное ядро ${}^{6}He$. Однако мы не нашли ни одного случая со следом электрона распада на конце следа второй (кроме "молотка") заряженной частицы. приводит к значительному подавлению этих реакций по сравнению с реакциями, где образуется меньшее число нейтронов /8/.

Для выделения реакций (1-4) проводился анализ событий на ЭВМ при помощи программы кинематического анализа ядерных реакций в фотоэмульсии .

Результаты анализа показали, что основным из указанных каналов является канал

 $\mu^{-} + {}^{12}C \rightarrow {}^{8}Li + {}^{3}He + n + \nu, \qquad (2)$

в то время как вероятности реакций (1), (3), (4) значительно меньше.

На рис. 2 приведено распределение по недостающей массе (эффективная масса нейтрон-нейтрино) для реакции (2). Из сравшения энергетического и импульсного распределений системы $(n + \nu)$ (рис. 3) можно сделать вывод о том, что нейтрон в реакции (2) уносит небольшую энергию = (3+10) Мэв.

В этом случае эффективную массу нейтральной системы $(n + \nu)$ $(M_{n + \nu}) = \sqrt{m^2 + 2E_n E_n (1 - \beta_n \cos \theta_n \nu)}$ можно записать в виде:

 $M_{\mu} = m_{\mu} + E_{\mu} (1 - \beta \cos \theta_{\mu}),$

где m_n - масса нейтрона, **Ε_ν** - энергия нейтрино, β_n - скорость нейтрона, θ_{nν} - угол между нейтроном и нейтрино.

По положению узкого пика в распределении **М**_nν в области (985-990) Мэв из рис. 2 можно оценить, что энергия нейтрино равна (45-50) Мэв. Небольшой разброс в **E**_ν свидетельствует о том, что нейтрино, по-видимому, вылетает в промежуточном двухчастичном процессе.

Такой процесс предполагается, в частности, при резонансном механизме захвата μ^- -мезонов /10/. В этом случае при захвате μ^- мезона ядром ¹²С в промежуточном состоянии образуется возбужденное

Рис. 2. Распределение по недостающей массе для реакции (2). Сплошная гистограмма – эксперимент; пунктир – результат расчета по схеме (1); штрих-пунктир – результат расчета по схеме, изображенной на рис, 5; сплошная кривая – распределение по фазовому объему.

Рис. 3. (а) и (б) – энергетические распределения ядер Li и He для реакции (2); (в) и (г) – распределения по энергии и импульсу системы $(n + \nu)$ для реакции (2). Сплошная гистограмма – эксперимент; пунктир – результат расчета по схеме (1); штрих-пунктир – результат расчета по схеме, изображенной на рис. 5; сплошная кривая – распределение по фазовому объему.

ядро ¹² **В** * и нейтрино. При этом, если нейтрино уносит (45-50) Мэв, то уровень возбуждения ¹² **В*** должен отстоять от основного на (42-47) Мэв.

Развал ядра ¹² В* с образованием в конечном состоянии ядер ⁸ Li и ³ Не может происходить по следующим двум схемам:

Измеренная в опыте угловая корреляция между ядром *Не* и системой нейтрон-нейтрино (рис. 4) позволяет исключить из рассмотрения схему *II*, поскольку в этом случае (как было вычислено теоретически) угловая корреляция оказывается смещенной в сторону больших углов, что противоречит экспериментальным результатам. По этой же причине может быть исключен из рассмотрения также механизм прямого захвата μ^- -мезона по схеме

 $\mu^{-} + {}^{12}C \rightarrow \nu + n + {}^{11}B* \longrightarrow {}^{8}Li + {}^{3}He.$

Отметим, что в случае прямого захвата нельзя описать и экспериментальное распределение по эффективной массе (n+ ν) (рис. 2).

Угловую корреляцию между ядром ³ He и системой нейтрон-нейтрино (рис. 4) удается удовлетворительно описать только в предположении, что ³ He и нейтрон образуются при развале промежуточного возбужденного ядра ⁴ He*, т.е. когда реакция (2) происходит по схеме: $\mu^{-} + {}^{12}C \rightarrow \nu + {}^{12}B^*$

 $\xrightarrow{8} Li + \xrightarrow{4} He * \\ \xrightarrow{3} He +i$

Наилучшее согласие с энергетическими и угловыми распределениями (рис. 2,3,4), полученными в опыте, достигается при моделировании

Рис. 4. Угловые корреляции для реакции (2). Сплошная гистограмма – эксперимент; пунктир – результат расчета по схеме (1); штрих-пунктир – результат расчета по схеме, изображенной на рис. 5; сплошная кривая – распределение по фазовому объему.

Рис. 5. Схема захвата µ -мезона на малонуклонной ассоциации · Li.

такого процесса с уровнями возбуждения¹² В - (44+3) Мэв и ⁴ Не-(22,5+2,0) Мэв ^{X/}

Другим возможным механизмом захвата д -мезона ядром может быть захват его частью ядра. Этот процесс схематически изображен на рис. 5. Вероятность такого процесса мала из-за большой энергии связи квазиядра ⁴ Li в ядре ¹²С. Однако изучаемый нами канал маловероятен и вклад такого механизма может оказаться существенным. Предполагая, что при захвате и -мезона на квазиядре 4 Li образуется возбужденное ядро ⁴ He* , распадающееся на ³ He и нейтрон, а импульсное распределение ⁴ Li совпадает с экспериментально определенным импульсным распределением ядер ⁸ Li (рис. 3), можно промоделировать этот процесс. Полученные в результате моделирования распределения приведены на рис. 2-4. Видно, что они также качественно согласуются с экспериментальными.

Следовательно, для определения вкладов механизма захвата " мезона с образованием промежуточного ядра 12 В* и поглощения и мезонов квазиядром ⁴Li необходимы детальные теоретические расчеты вероятности каждого из этих механизмов.

Относительная вероятность реакций определялась по сормуле:

$$W_{i} = \frac{n_{i} \epsilon_{\mu}}{N_{\mu} \Lambda_{i} \tau_{mi} \eta_{i} \epsilon_{T}},$$

x/

где n₁ - число событий, прин*е*длежащих к данной реакции; N_и - полное число распадов µ - мезонов в просмотренном объеме эмульсии (предполагалось, что распад и -мезонов происходит только при захвате их легкими атомами); Л, - скорость захвата и -мезона ядрами С, М или **О** ; т_т, - время жизни µ⁻-мезона в ядрах углерода, азота или кислорода; η, - относительная частота атомного захвата и -мезона

При моделировании принималось, что каждый промежуточный двухчастичный процесс происходит изотропно в своей с.п.и.

легкими ядрами в фотоэмульсии; ϵ_{μ} и ϵ_{τ} - эффективности регистрации, соответственно, $\mu \rightarrow e$ распадов и T-образных следов в фотоэмульсии (в нашем случае эти эффективности в пределах ошибок совпадают). Значения скорости захвата ($\Lambda_{,}$) и время жизни (r_{ml}) μ^{-} -мезонов в легких ядрах были взяты из работы ^{/11/}. Закон распределения остановок μ^{-} -мезонов по отдельным компонентам C, N, O в фотоэмульсии точно не известен. Относительные вероятности атомного захвата (η_{l}) определялись так же, как в работе ^{/1/}. При этом: $\eta_{l2_{c}} = 49,6\%$, $\eta_{l4_{N}} =$ = 14,4%, $\eta_{l6_{c}} = 36\%$.

Для определения относительной вероятности реакции (2) принималось, что к этой реакции относятся события, попавшие в интервал (975+995) Мэв в распределении по недостающей массе (308 событий); тогда

 $W_{\mu^{-12}C \rightarrow 8_{Li^{3}Hen\nu}} = (1,6 \pm 0,2) \cdot 10^{-3}$.

Оценим вклад в экспериментально зарегистрированные события от реакций (1), (3) и (4).

Кинематике реакций (1) и (3) на уровне достоверности 8% ($\chi^2_{min} \leq 3$ при одной степени свободы) удовлетворяют, соответственно, 123 и 53 события. Распределение по соs(⁴ He[•] ν) для реакции (1) заметно сдвинуто в сторону положительных значений; аналогичный сдвиг наблюдается также в распределении по соs(⁸ Li[•] ν) для реакции (3) (рис. 7), в то время как всевозможные схемы реакций (1) или (3) приводят к корреляциям, сдвинутым в сторону больших углов. Это расхождение может быть объяснено существенным вкладом основного процесса (2) в каналы (1) и (3). Действительно, сдвиг в сторону малых углов в распределениях по соs(⁴ He[•] ν) или соs(⁸ Li[•] ν) (рис. 7) получается при моделировании реакции (2) по схеме (1) с последующей "заменой" ядра ³ He ядрами ⁴ He[•] или ⁶ Li[•] (в гипотезах (1) или (3) соответственно). Ос-

Рис. 6. Распределение по недостающей массе для реакции (4). Сплошная кривая – эксперимент; пунктир – вклад реакции (2); сплошная кривая – распределение по фазовому объему.

Рис. 7. (а), (б), (в) – угловые корреляции для реакций (1), (2), (4) соответственно. Сплошная гистограмма – эксперимент; сплошная линия – вклад реакции (2); штрих-пунктир- результат расчета по схеме промежуточного возбужденного ядра для реакций (1) и (3); штрих-– распределение по фазовому объему для реакции (4).

новываясь на угловых распределениях рис. 7, можно оценить верхнюю границу относительной вероятности реакций (1) и (3):

 $W_{\mu^{-12}C \rightarrow 8_{L1}^{4}H_{\bullet\nu}} < 2,6\cdot10^{-4} (при числе событий < 50)$ $W_{\mu^{-14}N \rightarrow 8_{L1}^{6}C_{L1}\nu} < 1,4\cdot10^{-4} (при числе событий < 12).$

Кинематике реакции

могут удовлетворить 206 событий, имеющих недостающую массу, большую, чем масса нейтрона (рис. 6). Для этих случаев распределение по cos(⁸ Li (nv)) сильно сдвинуто в сторону малых углов. Такой сдвиг можно объяснить, как и в случае реакций (1) и (3), преобладанием реакции (2) (рис. 7).

Этот вывод подтверждается тем, что поведение спектра по недостающей массе реакции (4) также обусловлено вкладом основного канала $\mu^{-12} \mathbb{C} \rightarrow {}^8 \mathbb{L}i {}^3 \mathbb{H}e \ n \nu$, за исключением интервала (975-990) Мэв, где наблюдается заметное превышение над этим вкладом (рис. 6). Взяв величину превышения в качестве оценки верхней границы относительной вероятности реакции (4), получаем

 $W_{\mu} - {}^{16}_{O \rightarrow} s_{L_1} T_{B \circ n \nu} < 1,5 \cdot 10^{-4}$ (при числе событий < 47).

Оценив возможный суммарный вклад от реакций (1), (3) и (4), получаем, что

$$(1, 1 \pm 0, 2) \cdot 10^{-3} < W_{\mu^{-12}C \rightarrow 8} L_{I^{3}Hen\nu} < (1, 6 \pm 0, 2) \cdot 10^{-3}$$

Таким образом, из рассмотрения всей совокупности полученных экспериментальных данных следует считать, что захват µ -мезона на легких ядрах в фотоэмульсии в событиях двухлучевого типа с вылетом ядра ⁸ Li в основном происходит на ядрах углерода по реакции:

 $\mu^{-} + {}^{12}C \rightarrow {}^{8}Li + {}^{3}He + n + \nu.$ (2)

Относительные вероятности других возможных каналов примерно на порядок меньше.

Тот факт, что образование ядер ⁸ Li происходит преимущественно на ядрах углерода, может быть следствием структурной особенности ядра ¹² C и, по-видимому, не зависит от типа взаимодействия отрицательной заряженной частицы с ядром. Так, при захвате π -мезонов легкими ядрами фотоэмульсии, в событиях двухлучевого типа, ядра ⁸ Li образуются в реакции π^{-12} C \rightarrow ⁸ Li ³ Hen , протекающей по механизму прямого поглощения малонуклонной ассоциацией ⁴ Li ^{/1/}.

Данные настоящей работы показывают, что такой механизм может иметь место и в случае захвата μ^- -мезона. Однако мы не можем отдать предпочтение ни этому, ни другому возможному механизму, по которому захват μ^- -мезона происходит с образованием промежуточного возбужденного ядра¹² **B***

Для разделения этих двух механизмов, а также с целью более детального изучения процесса захвата µ⁻-мезонов, представляет интерес дальнейшее экспериментальное и теоретическое исследование других каналов реакций на легких ядрах.

Литература

 Ю.А. Батусов, С.А. Бунятов, В.М. Сидоров, В.А. Ярба. ЯФ, <u>6</u>, 1151 (1967).

Ю.А.Батусов, С.А. Бунятов, В.М. Сидоров, Ю.С. Чайка, Хр.М. Чернев, В.А. Ярба. ЯФ, <u>10</u>, 354 (1969).

- О.А. Займидорога, М.М. Кулюкин, Б.М. Понтекорво, Р.М. Суляев, А.И. Филиппов, В.М. Цупко-Ситников, Ю.А. Шербаков. ЖЭТФ, <u>41</u>, 1804 (1961).
- 3. А.О. Вайсенберг. ЖЭТФ, <u>41</u>, 109 (1961).
- 4. H. Morinaga, W.F. Fry. Nuovo Cim., 10, 308 (1953).
- 5. А.О. Вайсенберг, Э.Д. Колганова, Н.В. Рабин. ЯФ, <u>1</u>, 652 (1965).
- 6. A.G. Frodesen, K.S. Kölbig and M.M. Nikolić, CERN 65-6, 1965.
- 7. Ю.А. Батусов, С.А. Бунятов, В.М. Сидоров, В.А. Ярба. Phys. Lett., 22, 487 (1966).
- 8. B. Macdonald et al., Phys. Rev., 139B, 1253 (1965).
- Н.М. Агабабян, Ю.А. Батусов, С.А. Бунятов, Г.Р. Гулканян, В.М. Сидоров, В.А. Ярба. Сообщение ОИЯИ, 10-5891, Дубна 1971.
- 10. В.В. Балашов, Р.А. Эрамжян. Atomic Energy Review, <u>5</u>, 3 (1967).
- 11. M.Eckhause, R.T. Siegel, R.E. Welsh, T.A. Filippas. Nucl. Phys., 81, 575 (1966).

Рукопись поступила в издательский отдел 25 июня 1971 года.