

P1-5666

Экз. чит. ЗАЛА

ВОЗМОЖНОСТИ

BM(OKNX HEPTHE

ABOPATOPHS

ИНТЕРФЕРОМЕТРИИ РЕЗОНАНСОВ

P 1-5666

Г.И. Копылов

0

ВОЗМОЖНОСТИ

ИНТЕРФЕРОМЕТРИИ РЕЗОНАНСОВ

Направлено в ЯФ

§1. Введение

В работе^{/1/} была рассмотрена интерференция тождественных частиц 1,2, из которых одна рождается совместно с каким-то резонансом R массы m_R, а другая появляется в результате распада резонанса. В этом случае основные черты процесса определяются суммой амплитуд двух неразличимых каскадов

$$0 \rightarrow 1 + R \qquad \mu \qquad 0 \rightarrow 2 + R \qquad (1.1)$$

Было показано, что когда ширина Г_R резонанса мала и эффективные массы пар 23, 13, 12 удовлетворяют условиям

$$m_{13} \approx m_R, m_{23} \approx m_R, m_{12} \approx 2 m_1$$
 (1.2)

(приближенным равенством мы считаем отличие не более чем на величину порядка Г_в), то разность

$$\rho = \frac{1}{2} \left(m_{13}^2 - m_{23}^2 \right)$$
 (1.3)

распределена по закону Брейта-Вигнера

$$\frac{dW}{d\rho} - \frac{1}{2} + \frac{1}{1 + (\rho/m_{\rm R}\Gamma_{\rm R})^2}$$
(1.4)

с шириной, вдвое большей, чем ширина резонанса R . Это обстоятельство приводит к новому способу измерения ширины резонансов, по-видимому, особенно интересному, если ширина мала.

Пик (1.4) получается после усреднения по

$$\mathbf{x} = \left(\mathbf{m}_{0}^{2} - \mathbf{m}_{12}^{2} - 2\mathbf{m}_{R}^{2} + \frac{5}{1} - \mathbf{m}_{1}^{2}\right) / 2\mathbf{m}_{R} \Gamma_{R} \quad .$$
(1.5)

Оно может быть произведено варьированием либо начальной массы m₀, либо – m₁₂ в интервале

$$m_{12}^2 - 4m_1^2 < \kappa m_R \Gamma_R$$
 (1.6)

или варьированием m₁₃, m₂₃ внутри квадрата

$$m_{R}^{2} - \kappa m_{R} \Gamma_{R}^{2} < (m_{13}^{2}, m_{23}^{2}) \le m_{R}^{2} + \kappa m_{R} \Gamma_{R}^{2}, \qquad (1.7)$$

где к - величина порядка единицы.

Интерференционные явления в физике элементарных частиц и в оптике во многом сходны. Это сходство, отмеченное уже в /1/, более подробно прослежено в §2 настоящей работы, где показано, что измерения спектра ρ позволяют получить пространственно-временные характеристики резонанса. Имеются и различия, и \$\$3,4 посвящены выяснению этих новых по сравнению с оптикой черт интерференционных явлений. К их появлению приводит наличие у интерферирующих частиц массы покоя, а также реальная возможность наблюдать каждый отдельный акт рождения тождественных частиц. В §3 показано, что задание импульса \vec{p}_{0} и направления наблютождественных частиц определяет импульсы всех частиц, ления участвующих в реакции: это позволяет идентифицировать резонансы в процессе (1.1), наблюдая лишь тождественные частицы и не регистрируя других частиц, и делает возможным в принципе создание "интерферометра резонансов".

Содержание §4 связано с существованием у частиц с массой покоя максимальных углов вылета. В таких "предельных конфигурациях" требования к точности измерения энергий тождественных частиц могут быть сильно понижены, это позволит, вероятно, точнее измерять ширину резонансов. Конфигурации, близкие к предельным, используются для другой цели, а именно, для регулируемого условиями опыта "растяжения" интерференционных пиков. В некоторых условиях вместо спектра разности масс пар 13 и 23 можно снимать спектр разности энергий тождественных частиц. Ширина пика в этом спектре тоже пропорциональна ширине резонанса, но с коэффициентом, величину которого можно регулировать по желанию экспериментатора. Это также может помочь в измерении ширин узких резонансов.

Соображения, развиваемые здесь, представляют собой дальнейшую детализацию идей работы^{/1/}. Они носят предварительный характер в том смысле, что вопрос о статистике, необходимой для факти-

ческого наблюдения описываемых интерференционных явлений, должен быть еще решен с помощью, например, моделирования.

§2. Измерение пространственно-временных характеристик резонанса^{X/}

Измерение корреляций между фотонами в опыте Брауна-Твисса^{/2/} позволяет узнать размеры звезды. Точно так же в случае интерференции резонансных амплитуд измерения корреляции между тождественными частицами дают оценку распадного пробега и времени жизни резонанса (или расстояния между частицами, см. ниже).

Перепишем выражение для ρ (1.3), введя в него 4-импульсы
 и p₂₃ резонансов в системах 13 и 23:

$$\rho = \frac{1}{2} \left(p_{13}^2 - p_{23}^2 \right) = \frac{1}{2} \left(p_{13} + p_{23}^2 \right) \left(p_{1} - p_{2}^2 \right).$$
(2.1)

Из двух возможных при данных р₁ , р₂ , р₃ импульсов резонанса R – р₁₃ и р₂₃ – образуем среднеарифметический и обозначим его р_R . Тогда

$$\rho = \mathbf{p}_{\mathbf{R}} (\mathbf{p}_{1} - \mathbf{p}_{2}). \tag{2.2}$$

Чем ближе \mathbf{p}_1 к \mathbf{p}_2 , тем меньше отличается \mathbf{p}_R от импульса каждого из двух резонансов, \mathbf{p}_{13} или \mathbf{p}_{23} . Ширина кривой (1.4) определяется условием $|\mathbf{y}| \equiv |\rho| / \mathbf{m}_R \Gamma_R \approx 1$. Мы перепишем его в лабораторной системе отсчёта:

х/ Этот параграф написан совместно с М.И. Подгорецким.

$$|\mathbf{y}| = |\boldsymbol{\omega}_{\mathbf{R}} (\boldsymbol{\omega}_1 - \boldsymbol{\omega}_2) - \vec{\mathbf{p}}_{\mathbf{R}} (\vec{\mathbf{p}}_1 - \vec{\mathbf{p}}_2) | / \mathbf{m}_{\mathbf{R}} \Gamma_{\mathbf{R}} \sim 1.$$

В эту формулу можно ввести пространственные характеристики резонанса. Учтём, что $\Gamma_{\rm R} = \hbar/\tau$, где τ - среднее время жизни покоящегося резонанса. Величина $\vec{p}_{\rm R} \tau/m \equiv \vec{s}$ есть средний пробег резонансов в системах 13 и 23 в направлении $\vec{p}_{\rm R}$, а $\omega_{\rm R} \tau/m_{\rm R} \equiv t$ - среднее время жизни этих резонансов в л.с. Стало быть, для событий из области резонансного пика с $\vec{p}_{\rm I} \approx \vec{p}_{\rm R}$ имеем

$$| t(\omega_1 - \omega_2) - \vec{s}(\vec{p}_1 - \vec{p}_2) | \sim \vec{h}$$
 (2.3)

Векторы \vec{s} , \vec{p}_1 , \vec{p}_2 будем задавать их проекциями \vec{s}_1 , $\vec{p}_1 ||, \vec{p}_2 ||$ на направление \vec{n} суммы импульсов $\vec{p}_1 + \vec{p}_2$ и на плоскость, перпендикулярную этому направлению \vec{s}_1 , $\vec{p}_1 \perp$, $\vec{p}_2 \perp$ (рис. 1a). Тогда:

$$|\mathbf{t}(\omega_1 - \omega_2) - \mathbf{s}_{\parallel}(\mathbf{p}_{1\parallel} - \mathbf{p}_{2\parallel}) - \vec{\mathbf{s}}_{\perp}(\vec{\mathbf{p}}_{1\perp} - \vec{\mathbf{p}}_{2\perp})| \sim \mathbf{\hat{h}}.$$
(2.4)

Будем отбирать лишь такие события, в которых какие-нибудь три из четырех членов левой части (2.4) обращаются в нуль. Тогда спектр оставшейся величины позволит оценить среднее значение t (или в , или в) для отобранных конфигураций. Так, события с

х/
Например,
$$\vec{s}_{\perp} = \vec{s} - \vec{n} (\vec{n} \cdot \vec{s})$$
 и т.д.

оставят из (2.4) лишь $s_{\perp}(|\vec{p}_{1\perp}|+|\vec{p}_{2\perp}|)$ (рис. 16). Следовательно, распределение по $|\vec{p}_{1\perp}|+|\vec{p}_{2\perp}|$ в таких конфигурациях дает оценку для s_{\perp} -среднего пробега резонанса поперек направления вылета тождественных частиц, или, -что то же самое – оценку расстояния между тождественными частицами, отмеренного поперек их движения. Если к тому же импульс p_{R} в таких конфигурациях фиксирован, то значение $s_{\perp} = p_{Ri} \tau/m_{R}$ позволит вычислить время жизни τ резонанса.

Заметим, что требование фиксировать р_R не противоречит необходимости усреднять по x в области (1.2) для получения формулы (1.4), поскольку импульс узкого резонанса может оставаться практически неизменным при варьировании переменных по этой области.

Следует иметь в виду, что не всякую тройку членов соотношения (2.4) можно одновременно обратить в нуль и не всякий оставшийся член (2.4) может обеспечить в своих вариациях промеры всей резонансной линии. Четыре компоненты 4-вектора $p_1 - p_2$ не является независимыми, из очевидного равенства

$$(p_{1} + p_{2})(p_{1} - p_{2}) = 0$$
(2.6)

следует связь между $\Delta \omega = \omega_1 - \omega_2$ и $\Delta \mathbf{p} = \mathbf{p} =$

$$\Delta \omega = \mathbf{v}_{12} \Delta \mathbf{p}_{||} , \qquad (2.7)$$

где

$$\vec{v}_{12} = \vec{p}_{12} / \omega_{12}, \quad \vec{p}_{12} = \vec{p}_1 + \vec{p}_2, \quad \omega_{12} = \omega_1 + \omega_2.$$
 (2.8)

Вектор $\overrightarrow{\Delta \mathbf{p}_{\perp}} = \overrightarrow{\mathbf{p}}_{1\perp} - \overrightarrow{\mathbf{p}}_{2\perp}$ можно характеризовать его направлением $\overrightarrow{\mathbf{N}}$ и углом разлета ψ частиц 1 и 2:

$$\vec{\Delta \mathbf{p}}_{\perp} = \mathbf{p}_{12} (\psi / 2) \vec{\mathbf{N}} .$$

Введем еще "среднюю" скорость резонанса R : $\vec{v}_R = \frac{\vec{p}_{13} + \vec{p}_{23}}{\omega_{13} + \omega_{23}}$. Тогда левую часть (2.4) можно представить в виде суммы независимых

членов

$$\mathbf{y} = \mathbf{t} \left(\mathbf{v}_{12} - \vec{\mathbf{v}}_{\mathbf{R}} \, \vec{\mathbf{n}} \right) \Delta \mathbf{p}_{||} - \left(\vec{\mathbf{s}}_{\perp} \, \vec{\mathbf{N}} \right) \mathbf{p}_{12} \left(\psi / 2 \right). \tag{2.9}$$

Эта формула похожа на приведенную в /1/ формулу

$$\rho = \omega_{0} \left(1 - \frac{\vec{v}_{0} \vec{n}}{v_{12}}\right) \Delta \omega - (\vec{p}_{0} \vec{N}) p_{12} (\psi / 2), \qquad (2.10)$$

но в отличие от нее позволяет непосредственно продемонстрировать связь спектра у с пространственно-временными свойствами резонанса. Рассмотрим, например, коэффициент при $\Delta p_{||}$ в (2.9). Его смысл станет особенно прозрачен, если отобрать конфигурации с $\vec{s_{\perp}} \vec{N} = 0$ или $\psi = 0$ (рис. 1в). Тогда

$$y = (t v_{12} - t \vec{v}_{R} \vec{n}).$$
 (2.11)

Частица 1 образуется в точке А одновременно с резонансом \mathbf{R} , поэтому $t \mathbf{v}_{12}$ – это ее пробег в направлении \vec{n} до момента распада резонанса \mathbf{R} ; в этот момент образуется частица 2, и $t \vec{\mathbf{v}}_{\mathbf{R}} \cdot \vec{\mathbf{n}}$ – это ее удаление от точки А в направлении $\vec{\mathbf{n}}$, а

$$\mathbf{tv}_{12} - \mathbf{tv}_{\mathbf{R}} \mathbf{n} = \mathbf{s}_{1||} - \mathbf{s}_{2||} = \Delta \mathbf{s}_{1||} - \mathbf{s}_{2||}$$

расстояние между тождественными частицами в направлении их движения \vec{x}' . Следовательно, отбирая среди конфигураций, в которых либо $\vec{s}_{\perp} = 0$, либо $\psi = 0$, события с одними и теми же скоростями резонанса и строя для них распределения по Δp_{\parallel} , мы получим расстояние между тождественными частицами в этих конфигурациях

$$|\Delta \mathbf{s}_{||}| | \sim \mathbf{h} / |\Delta \mathbf{p}_{||}|. \tag{2.12}$$

 Если по условиям опыта обрашен в нуль один из членов формул
 или (2.10), то вариации оставшегося члена могут обеспечить промеры всей резонансной линии.

Для доказательства удобно применить тождество

$$(\mathbf{p}_{1} - \mathbf{p}_{2})^{2} = -(\mathbf{m}_{12}^{2} - 4\mathbf{m}_{1}^{2}).$$
 (2.13)

Расписанное по компонентам, оно с учётом (2.7) позволяет связать $\frac{\Delta p_{\perp}}{x} (unu \psi) c \Delta p_{\parallel} :$

^{X7} Особый интерес представляют конфигурации, в которых Δs =0, но $\psi \neq 0$ (рис. 1г); они описаны в §4.

$$|\overrightarrow{\Delta \mathbf{p}_{\perp}}| = \left(m_{12}^{2} - 4m_{1}^{2} - \frac{m_{12}^{2}}{\omega_{12}^{2}} \Delta \mathbf{p}_{\parallel}^{2}\right)^{\frac{1}{2}} .$$
(2.14)

На квадрате (1.7) разность $m_{12}^2 - 4m_1^2$ меняется на величину порядка m _р Г _р (см. (1.6)). Поэтому формула (2.9) представляет величину у, вариации которой в районе пика имеют порядок 1, в виде разности двух членов, изменяющихся в гораздо большем интервале порядка $\sqrt{m_{_{\rm P}}}/\Gamma_{_{\rm P}}$. Следовательно, в конфигурациях, в которых ψ =0, спектр у может быть снят с помощью измерений разности энергий $\Delta\,\omega$ а в конфигурациях с одинаковыми энергиями ($\omega_1 = \omega_2$) спектр у можно получить из угловых измерений. В обоих случаях величина оставшегося в (2.9), (2.10) члена (а значит, и величина у или ρ) определяется значением m₁₂ (см. (2.14)); изменение m²₁₂ в интервале (1.6) прочертит на квадрате (1.7) одну линию (рис. 2) $y = y (m_{12}^2);$ чтобы проинтегрировать по всем x (замести этой линией весь квадрат), надо варьировать массу m о вокруг значения m (см. ниже (3.1)) в интервале

$$(\overline{\mathbf{m}}_{0}^{2} - \kappa \mathbf{m}_{\mathbf{R}} \Gamma_{\mathbf{R}}, \overline{\mathbf{m}}_{0}^{2} + \kappa \mathbf{m}_{\mathbf{R}} \Gamma_{\mathbf{R}}).$$
 (2.15)

§3. Наблюдение интерференции с помощью спектрометра недостающих масс

1. Как показано в^{/1/}, условия (1.2) одновременно выполняются лишь в некогором интервале m_o близ

$$\overline{m}_{0} = \left(2 m_{R}^{2} + m_{1}^{2} + m_{2}^{2} - m_{3}^{2}\right)^{\frac{1}{2}}, \qquad (3.1)$$

причём импульс \vec{p}_0 произволен. Для каждого данного импульса \vec{p}_0 и направления наблюдения \vec{n} импульсы тождественных частиц определены тем самым однозначно. В самом деле, при $m_{12} = 2m_1$ процесс (1.1) можно изобразить распадом 0 на две частицы с массами $m_{12} = 2m_1$ и m_3 . Тогда импульс и энергия пары 12 определятся углом ее вылета θ :

$$\frac{\omega_0^2 - p_0^2 \cos^2 \theta}{m_{12}} \left(\frac{p_{12}}{\omega_{12}} \right) = \left(\frac{p_0 \cos \theta}{\omega_0} \right) \omega_0^* \pm \left(\frac{\omega_0}{p_0 \cos \theta} \right) \left(p_0^{*2} - p_0^2 \sin^2 \theta \right)^{\frac{1}{2}}$$
(3.2)

где

$$\omega_{0}^{*} = (m_{0}^{2} + m_{12}^{2} - m_{3}^{2}) / 2m_{12}, \quad p_{0}^{*} = [(\omega_{0}^{*})^{2} - m_{0}^{2}]^{\frac{1}{2}},$$

$$m_{0} = \overline{m}_{0}, \quad m_{12}^{2} = 2m_{1}.$$
(3.3)

Только при $m_0 = \bar{m}_0$ эта формула дает значения \vec{p}_{12} , достижимые в процессе (1.1). Только при $m_{12} = 2m_1$ импульс \vec{p}_{12} определяет \vec{p}_1 , и \vec{p}_2 однозначно:

$$\vec{\mathbf{p}}_{1} = \vec{\mathbf{p}}_{2} = \frac{1}{2} \vec{\mathbf{p}}_{12}$$
, $\omega_{1} = \omega_{2} = \frac{1}{2} \omega_{12}$, $\theta_{1} = \theta_{2} = \theta$. (3.4)

Представим себе все возможные процессы типа (1.1) с разными значениями параметров $\mathbf{m}_1 = \mathbf{m}_2$, \mathbf{m}_3 , \mathbf{m}_R , \mathbf{m}_0 , \vec{p}_0 , \mathbf{m}_{12} , \vec{p}_1 , \vec{p}_2 . В пределе $\Gamma_R \rightarrow 0$ каждому набору значений $\mathbf{m}_1, \mathbf{m}_3, \mathbf{m}_R, \vec{p}_0, \theta_1$ отвечает лишь одно значение \mathbf{p}_1 , при котором наблюдается интерференция (порою два из-за двузначности (3.2)). Любое изменение \mathbf{m}_8 , \vec{p}_0 , θ_1 уведет нас от этой точки. Следовательно, в принципе, чтобы проверить, идет ли на опыте реакция (1.1), достаточно доказать, что 1) зарегистрированному значению \vec{p}_0 отвечает появление событий с расчётными значениями \vec{p}_1 и \vec{p}_2 , и 2) при этом наблюдается интерференция, т.е. пик в спектре ρ . Измерять импульс частицы 3 не требуется, так как $p_3 = p_0 - p_{12}$ и

$$\rho = \frac{1}{2} \left(m_{13}^2 - m_{23}^2 \right) = p_0 \left(p_1 - p_2 \right).$$
(3.5)

2. Это свойство, в принципе, позволяет идентифицировать реакцию (1.1) по наблюдениям только тождественных частиц в установке типа спектрометра недостающих масс (рис. 3а). Пусть система О рождается в реакции типа

$$K^{\pm} + p \rightarrow p + 0^{\pm} \rightarrow p + K^{\pm} + \phi \qquad (3.6)$$

$$\pi^{\pm} + \mathbf{p} \rightarrow \mathbf{p} + \mathbf{0}^{\pm} \rightarrow \mathbf{p} + \pi^{\pm} + \omega^{0} \qquad (3.8)$$

Будем регистрировать протоны в (3.6) (дейтроны в (3.7)) с таким импульсом р, чтобы было обеспечено

$$m_0^2 \equiv (p_{\text{HAYAJDH.}} - p_p)^2 = \overline{m}_0^2.$$
 (3.9)

Задание \vec{p}_{p} определит и \vec{p}_{0} ; зададимся направлением наблюдения \vec{n} и будем регистрировать в этом направлении лишь пары тождественных частиц (K[±] K[±] в (3.6), $\pi^{+} \pi^{+}$ в (3.7)). Наличие пика в спектре ρ будет свидетельствовать о существовании реакции (3.6) – (3.7).

Распад резонанса \mathbf{R} на три мезона можно также представить в виде $\mathbf{R} \rightarrow \mathbf{l} + \mathbf{3}$ с переменной массой \mathbf{m}_3 . Поэтому при расчёте положения счётчиков в реакции (3.8) надо задаться значением \mathbf{m}_3 и наблюдать лишь системы 0 с заданным \mathbf{m}_3 . Это значительно ухудшит статистику наблюдений, но в принципе не воспрепятствует наблюдению

ω⁰ (или X⁰) лишь по одному из продуктов их распада. Для повышения статистики можно предусмотреть наблюдение частиц отдачи и пар тождественных частиц в широком интервале углов он-лайн с ЭВМ, согласующей импульсы этих частиц по формулам (3.2) (рис. 3б).

Прямое образование пар "резонанс+частица" возможно при аннигилящий антипуклонов в реакциях гипа

Однако в отличие от реакций типа (3.6)-(3.8) в них есть только одно значение p_0 , при котором $m_0 = \overline{m}_0$. Оно получается из равенства

$$2 m_{p}^{2} + 2 m_{p} \omega_{\overline{p}} = m_{0}^{2} = 2 m_{R}^{2} + 2 m_{\pi}^{2} - m_{3}^{2} .$$
 (3.11)

Наименьшее значение левой части есть $4 m_p^2$, поэтому таким способом можно наблюдать рождение резонансов $R \rightarrow 3 \pi$ с _{массой} не ниже 1,34 Гэв/с².

\$4. Предельные конфигурации. Растяжение резонансных пиков

Форма пика может быть точнее промерена в событиях, в которых одна из тождественных частиц вылетает при распаде резонанса под максимально возможным углом^{/1/}. В §4.1 мы подробней разберем свойства и смысл таких "предельных конфигураций". Отбор конфигураций, блиэких к предельным, но не совпадающих с ними, позволяет растянуть спектр $\Delta \omega$ в несколько раз (§4.2) и тем самым разрешить иногда две близ-кие резонансные линии (§4.3).

1. Свойства предельных конфигураций в распадах $0 \rightarrow 12 + 3$ и $\mathbf{R} \rightarrow \mathbf{l} + 3$ проще всего вывести из двух фактов: 1) при $\mathbf{m}_{12} = 2\mathbf{m}_1$ совпадают система покоя частицы 1 и система покоя пары 12 (обозначим эту систему *); 2) если в системе покоя вторичной частицы первичная оказывается направленной поперек направления $\vec{\mathbf{n}}$ вторичной частицы в л.с., то направление $\vec{\mathbf{n}}$ – предельное.

Законы сохранения для распадов $0 \rightarrow 12 + 3$ и $R \rightarrow 1 + 3$ в общей системе * позволяют связать 4-импульсы p_{p}^{*} и p_{0}^{*} (рис. 4а):

$$\vec{p}_{3}^{*} = \vec{p}_{0}^{*}$$
, $\vec{p}_{3}^{*} = \vec{p}_{R}^{*}$, $\omega_{3}^{*} = \omega_{0}^{*} - 2m_{1}$, $\omega_{3}^{*} = \omega_{R}^{*} - m_{1}$. (4.1)

Отсюда следует, что условия $\vec{p}_0^* \vec{n} = 0$ и $\vec{p}_R^* \vec{n} = 0$ совместны, т.е. когда частица 1 вылетает под предельным углом Θ в распаде $R \rightarrow 1 + 3$, то пара 12 с $m_{12} = 2m_1$ вылетает под предельным углом θ в распаде $0 \rightarrow 12 + 3$ (рис. 4б). Углы Θ, θ найдем из (3.2) или из сходной формулы для p_1 и ω_1 в распаде $R \rightarrow 1 + 3$:

$$\sin \theta = \mathbf{p}_0^* / \mathbf{p}_0, \quad \sin \Theta = \mathbf{p}_R^* / \mathbf{p}_R. \tag{4.2}$$

Отсюда же найдем и энергию под предельным углом:

$$\omega_{12} = m_{12} \omega_0 / \omega_0^* , \ \omega_1 = m_1 \omega_0 / \omega_0^* \ _{\text{ИЛИ}} \ \omega_1 = m_1 \omega_R / \omega_R^* , \qquad (4.3)$$

и, как следствие, энергию резонанса $\omega_{\mathbf{R}} = \omega_{0} \omega_{\mathbf{R}}^{*} / \omega_{0}^{*}$. Преобразуя предельную конфигурацию (рис. 4) в л.с., получим важное свойство: проекции скоростей любых частиц на $\vec{\mathbf{n}}$ для нее одинаковы:

$$\vec{v}_{0}\vec{n} = \vec{v}_{3}\vec{n} = \vec{v}_{R}\vec{n} = \vec{v}_{12}\vec{n} = \vec{v}_{1}\vec{n} = \vec{v}_{2}\vec{n} = v_{12} = \sqrt{1 - (\frac{\omega_{0}^{*}}{\omega_{0}})^{2}}.$$
 (4.4)

В^{/1/} уже было отмечено, что свойство (4.4) ведет к тому, что в (2.9) или в (2.10) исчезает зависимость от Δp₁ или от Δω (коэффициент при них обращается в нуль) и что при наблюдении предельных конфигураций форму интерференционного пика можно промерить с повышенной точностью: направления, как правило, измеряются точнее энергий. Интерферометры недостающих масс по этой причине следует настраи ивать на предельные конфигурации. Способ расчёта параметров и эффективности такого устройства приведен в приложении. Примерный характер зависимости параметров предельной конфигурации от массы частицы 3

иллюстрирует рис. 5, где приведены расчёты предельных углов и импульсов под этими углами для реакции (3.8).

Отсутствие на предельных конфигурациях зависимости у от $\Delta \omega$ имеет простой физический смысл: когда проекция скорости резонанса на направление \vec{n} пары 12 совпадает со скоростью этой пары, то дистанция между частицами 1 и 2, отмеряемая вдоль общего направления их движения, равна нулю (рис. 1г); эти частицы одновременно проходят через любую плоскость, перпендикулярную направлению их движения. Нулевой интервал времени приводит к независимости корреляций от разности энергий излучаемых частиц и, в конечном счёте, позволяет измерить спектр величины у с повышенной точностью.

2. Рассмотрим ситуацию, когда в опыте отбираются лишь такие пары 12, плоскость которых перпендикулярна "плоскости реакции" – плоскости (\vec{p}_0, \vec{p}_3) или, что то же самое, плоскости (\vec{p}_0, \vec{p}_R). Тогда в (2.13) или (2.14) угловой член выпадет, а останется

$$y = \frac{\omega_0}{m \Gamma_{R}} \left(1 - \frac{\vec{v}_0 \vec{n}}{v_{12}}\right) \Delta \omega .$$
 (4.5)

Пусть выбрано такое направление наблюдения \vec{n} , чго $a \equiv |1 - \vec{v}_0 \vec{n} / v_{12}|$ есть малое число, фиксированное с той точностью, какую позволяет ширина резонанса. Это – направление, близкое к предельному (когда a = 0), но немного сдвинутое в сторону, притом контролируемым образом. Формула (4.5) утверждает, что на таких "поперечных почти предельных" конфигурациях спектр $\Delta \omega$ есть спектр ρ , растянутый в $\lambda = m_R / \omega_R a$ раз:

$$w(\Delta \omega) = \frac{dW}{d\Delta \omega} \sim 1 + \frac{1}{1 + (\Delta \omega / \tilde{\Gamma})^2}, \qquad (4.6)$$

Где $\Gamma = m_R \Gamma_R / \omega_0 a$ есть полуширина распределения. Но слишком малые а могут привести к тому, что удастся промерить лишь часть резонансного пика. Наименьшее а найдем из условия $|y| \approx 1$. Так как $\Delta \omega_{max}$ в (4.6) равно р 12 $(1-4m_1^2/m_{12}^2)^{1_2} \approx \frac{p_{12}}{m_{12}} \sqrt{m_R} \Gamma_R$ (см. (2.14), (2.7) и (1.6)), то

$$\alpha_{\min} = \frac{\mathbf{m}_{\mathrm{R}}}{\omega_{0}} \frac{\mathbf{m}_{12}}{\mathbf{p}_{12}} \sqrt{\frac{\Gamma_{\mathrm{R}}}{\mathbf{m}_{\mathrm{R}}}} .$$
(4.7)

Расчёт при $p_{\pi} = 3$ Гэв/с процесса (3.8) с передачей нуклону импульса 0,3 Гэв/с дает для a_{\min} величины порядка 0,01-0,02. Будем считать, что требование фиксировать разность скоростей "частицы" 12 и системы 0 на уровне 0,1 не слишком обременительно для эксперимента. Это приведет уже к 5-кратным растяжениям пика ρ : $\lambda_{\max} \approx 10 \, \mathrm{m_R}/\omega_0 \approx$ $\approx 3 \div 6$ - и, следовательно, к 10-кратным растяжениям пика в спектре m_{13} .

Применение этого свойства очевидно: когда ширина резонанса сравнима с погрешностью измерения импульсов, такой резонанс удобно перед измерение растянуть. Для этого надо настроить "интерферометр недостающих масс" на "поперечные почти предельные" конфигурации (на рис. 36 система счётчиков С₁ предназначена для протонов отдачи, С₂ – нар 12; требование близости угла наблюдения пары 12 к θ ставит в соответствие при каждом значении m₃ каждому счётчику С₁ определенный счётчик С₂. При наблюдении распада резонанса на две частицы достаточно одной пары С₁С₂).

 З. Интересна возможность разрешать в спектре Δω тесные и узкие резонансные пики, которые сами по себе не перекрываются, но не могут быть разрешены в спектрах m₁₃ или 'ρ из-за ограниченной точности измерений.

Пусть кроме резонанса R по схеме (1.1) может рождаться другой резонанс r с близкой массой m_r и с шириной Γ_r . Он тоже распадается на те же частицы: 1 и 3 или 2 и 3. Пусть резонансные пики в спектрах m₁₃, m₂₃ с "вершинами" в m_R, m_r в действительности раз-решены: $\|\mathbf{m}_R - \mathbf{m}_r\| > \Gamma_R$ и Γ_r , но экспериментальная точность

 Δ разрешения масс не позволяет это увидеть: $\Delta > |\mathbf{m}_{R} - \mathbf{m}_{r}|$. Спектр ρ для этого случая показан на рис. 6 (было взято $\Gamma_{R} = = \Gamma_{r} = \Gamma$, $|\mathbf{m}_{R} - \mathbf{m}_{r}| = N\Gamma$, N=10, 4, 2), он растянут вдвое по сравнению со спектром \mathbf{m}_{13} (см. (1.4)).

Спектр $\Delta \omega$ повторяет форму спектра ρ с добавочным коэффициентом растяжения, устанавливаемым условием эксперимента.

Из рисунка, однако, видно, что для перекрывающихся резонансов интерференция приводит и к искажению формы пиков, в частности к уменьшению глубины Минимумов, так что реально этот способ применим при достаточно большом (в единицах Γ) расстоянии между пиками. В случае $\Gamma_{\rm R} \gg \Gamma_{\rm r}$ боковые линии в интерференционной картине будут иметь ширину $\approx \Gamma_{\rm R} / 2$, не позволяя тем самым измерить ширину более узкого резонанса.

В заключение я хочу выразить свою глубокую признательность М.И. Подгорецкому, которому принадлежит ряд идей, легших в основу этой работы; я благодарен также В.Г. Гришину за полезные обсуждения.

Литература

- 1. В.Г. Гришин, Г.И. Копылов, М.И. Подгорецкий. Сообщения ОИЯИ, P1-5315, Дубна, 1970.
- 2. R. Hanbury-Brown, R.Q. Twiss. Phil. Mag., 45, 633 (1954).

Рукопись поступила в издательский отдел 4 марта 1971 года.

Рис. 1. Картина процесса (1.1) в координатном пространстве, на рис. а) и б) слева – в плоскости реакции, справа – видимая "с ребра". а) – общий случай, б) – измерение поперечного пробега резонанса, в) – продольного, г) – пространственно-временные свойства "предельной конфигурации".

Рис. 2. Часть фигуры Далица процесса $0 \rightarrow 1+2+3$, D – квадрат, где идет процесс (1.1) и должна наблюдаться интерференция. Расстояния точек фигуры от сторон описанного треугольника равны $m_{13}^2 - (m_1 + m_3)^2$, $m_{23}^2 - (m_2 + m_3)^2$, $m_{12}^2 - 4 m_1^2$ (на рисунке показана гипотенуза треугольника).

Рис. 3. a) - примерная схема установки, идентифицирующей резонансы по парам тождественных частиц; б) - то же в случае распадов R на три частицы.

-0-

(a)

Рис. 4. Реакция (1.1) при вылете частицы 1 под предельным углом, изображенная а) – в системе * , б) – в импульсном пространстве, в) – в пространстве скоростей.

Рис. 5. Расчёт реакции (3.8) при р $_{\pi}$ = 3 Гэв/с и при передаче импульса протону 0,3 Гэв/с в интервале масс m_3 от 0,3 до 0,6 Гэв/с². Показана зависимость θ , θ_p , ω_{12} , v_{12} , λ_{max} , a_{min} от m_3 при вылете пар 12 под предельными углами Θ_{max} .

Рис. 6. Вверху - спектр m²₁₃ при наличии двух резонансов в системе 13 (второй пик получается зеркальным отражением относительно оси w), внизу - как будет выглядеть этот спектр в интерференционных опытах. Кривые 1,2,3 соответствуют |m_R-m_r|=10Г, 4Г, 2Г.