

Экз. ЧИТ. ЗАЛА

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Million and

Дубна.

P1-5665

А.П. Гаспарян, А.В. Никитин, Ю.А. Троян

4600ATOPHS BUCOKMX 3HEPTHM

СЕЧЕНИЯ НЕУПРУГИХ КАНАЛОВ РЕАКЦИЙ В пр – ВЗАИМОДЕЙСТВИЯХ ПРИ ИМПУЛЬСЕ НЕЙТРОНОВ ОТ 2 ДО 10 ГЭВ/С

P1-5665

А.П. Гаспарян, А.В. Никитин, Ю.А. Троян

СЕЧЕНИЯ НЕУПРУГИХ КАНАЛОВ РЕАКЦИЙ В пр – ВЗАИМОДЕЙСТВИЯХ ПРИ ИМПУЛЬСЕ НЕЙТРОНОВ ОТ 2 ДО 10 ГЭВ/С

Направлено в ЯФ

Научно-техническая библиотека ОИЯИ 1. В настоящее время имеется всего лишь несколько работ /1-9/ х/ по сечениям неупругих реакций в пр -взаимодействиях. Эти эксперименты были выполнены при облучении протонами камер, наполненных дейтерием (о использовании дейтерия в качестве нейтронной мишени см. /5/).

В данном эксперименте^{/10-12/} сечения неупругих реакций определялись на материале 3- и 5-лучевых звезд. Было отобрано ≈ 8 тысяч 3-лучевых и около 3 тысяч 5-лучевых звезд. Определялись сечения следующих каналов реакций:

 $pp \pi^{-} (1)$ $pp \pi^{-} (m \pi^{0}), m = 1, 2, ... (2)$ $np \pi^{+} \pi^{-} (3)$

 $n p \pi^{+} \pi^{-}$ (3) $n p \pi^{+} \pi^{-} (m \pi^{0}), m = 1, 2, ...$ (4)

 $\int \mathbf{n} \, \mathbf{n} \, \pi^{+} \, \pi^{+} \pi^{-} (\, \mathbf{m} \, \pi^{\, 0}\,) \,, \quad \mathbf{m} = 0, 1, 2, \dots \tag{5}$

 $\mathbf{p}\mathbf{p}\,\boldsymbol{\pi}^{\,+}\,\boldsymbol{\pi}^{\,-}\,\boldsymbol{\pi}^{\,-} \tag{6}$

$$\mathbf{p}\,\mathbf{p}\,\pi^{+}\,\pi^{-}\,\pi^{-}\,(\mathbf{m}\,\pi^{0})\,,\,\mathbf{m}=1,2,\ldots$$
(7)

 $n p \pi^{+} \pi^{+} \pi^{-} \pi^{-}$ (8)

$$n p \pi^{+} \pi^{+} \pi^{-} \pi^{-} (m \pi^{0}), m = 1, 2, \dots$$
(9)

$$nn \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} (m\pi^{0}), m = 0, 1, 2, ...$$
(10)

x/Фотоэмульсионные данные не приводятся вследствие больших ошибок.

Выделение событий типа (1,6) основывалось на χ^2 -методе с последуюшей визуальной идентификацией (12,13,16-19). Методы выделения реакций (2,5,7-10), способы получения спектров нейтронов, вызвавших события данного типа и приближения, используемые в них, подробно описаны в работах (12,14).

2. Остановимся на способе разделения реакций (3,4). Методы, разработанные ранее $^{/12,14/}$, позволяют с $\approx 10\%$ примесью выделить в 3-лучевых звездах класс реакций $\mathbf{np} \rightarrow \mathbf{np} \pi^+\pi^- (\mathbf{m} \pi^0)$, $\mathbf{m} = 0,1,2,\ldots$ (" \mathbf{n} "). События типа " \mathbf{n} " составляют $\approx 70\%$ от всех 3-лучевых звезд, используемых для получения сечений. По количеству γ -квантов, зарегистрированных на опыте, было определено, что в классе " \mathbf{n} " содержится $\approx 45\%$ событий $\mathbf{np} \rightarrow \mathbf{np} \pi^+ \pi^-$.

Далее видно, что реакция **np** → **np** π⁺π⁻(**m**π⁰), **m** = 0,1,2,...симметрична относительно изотопического сопряжения. Отсюда следует, что всевозможные распределения в с.ц.м. реакции для характеристик изотопически сопряженных частиц и их комбинаций должны быть подобны. Тогда (в пренебрежении разностью масс нейтрона и протона) справедливо утверждение, что сколько энергии в среднем уносится частицами в переднюю полусферу, столько же энергии уносится частицами и в заднюю полусферу.

Для всех событий класса " п " из законов сохранения энергии-импульса определим импульс первичного нейтрона Р_{min} в предположении, что среди вторичных частиц есть только одна нейтральная частица – нейтрон. Это возможно, т.к. направление налетающего нейтрона известно. При значениях величин импульсов падающих нейтронов Р_{min} переведем кинематические характеристики событий класса " п " в с.ц.м. реакции и определим величину разности энергий, уносимых частицами в переднюю и заднюю полусферы, E*, - E*,

На рис. 1 представлено распределение величины $E_{f}^{*} - E_{b}^{*}$ для всех событий класса " n ". Заштриховано распределение для реакции (4) (брались события, содержащие γ -кванты с учётом эффективности регистрации).

Для выделения реакции пр→пр π⁺ π⁻ выберем симметричные границы по величине Е^{*}₁ – E^{*}_b так, чтобы для событий, находящихся внутри выбранных границ, наилучшим образом выполнялись условия:

а) число событий внутри границ не должно превышать числа событий типа (3), определяемого по γ -квантам, больше, чем на примесь из реакции (4);

б) в с.ц.м. реакции угловые распределения нейтронов и протонов,
π⁺-и п⁻-мезонов должны быть подобны. Выбраны следующие границы:
при P_{min} < 7 Гэв/с, ||E^{*}_f - E^{*}_b|| < 0,3 Гэв, а при Р_{min} < 7 Гэв/с,
||E^{*}_f - E^{*}_b|| < 0,5 Гэв.

Таким образом, если величина $E_{f}^{*} - E_{b}^{*}$ попадает внутрь выбранных границ и в звезде нет зарегистрированного γ -кванта, то данное событие относится к реакции $np \rightarrow np \pi^{+} \pi^{-}$ и импульс падающего нейтрона берется равным P_{min} .

Примесь в реакцию $\mathbf{np} \rightarrow \mathbf{np} \pi^+ \pi^-$ от событий типа (4) оценивалась по γ -квантам и оказалась равной $\approx 35\%$. На рис. 2,3 приведены угловые распределения нейтронов и протонов, $\pi^+ - \mathbf{u} \pi^-$ -мезонов в с.ц.м. реакции для событий $\mathbf{np} \rightarrow \mathbf{np} \pi^+ \pi^-$. Заштрихованы угловые распределения для примесных событий. Коэффициенты асимметрии α равны:

$$\alpha_{p} = \frac{\vec{p} - \vec{p}}{\vec{p} + \vec{p}} = -0,075 \pm 0,045; \quad \alpha_{n} = \frac{\vec{n} - \vec{n}}{\vec{n} + \vec{n}} = +0,074 \pm 0,045$$

$$\alpha_{\pi} - = \frac{\vec{\pi} - \vec{\pi} - \vec{n}}{\vec{n} - \vec{n} - \vec{n}} = +0,37 \pm 0,045; \quad \alpha_{\pi} + = \frac{\vec{\pi} + -\vec{n} + \vec{n}}{\vec{n} + \vec{n} + \vec{n}} = -0,31 \pm 0,045;$$
(11)

Рис. 1. Распределение по величине E^{*}_t - E^{*}_b для всех событий класса " n ". Заштриховано распределение для реакции (4).

Рис. 2. Угловые распределения протонов и нейтронов в с.ц.м. реакции для событий пр→пр $\pi^+\pi^-$. Заштрихованы угловые распределения для примесных событий.

Рис. 3. Угловые распределения π^- и π^+ -мезонов в с.ц.м. реакции для событий $\mathbf{np} \rightarrow \mathbf{np} \pi^+ \rho \pi^-$. Заштрихованы угловые распределения для примесных событий.

Стрелкой указано направление полета в с.ц.м. реакции частиц определенного сорта. Видно, что в пределах статистических флуктуаций соотношения изотопического сопряжения выполняются.

В итоге можно сделать вывод, что применение вышеизложенной процедуры позволяет выделить с ≈ 35% примесью события пр → пр π⁺ π⁻ и определить импульсный спектр первичных нейтронов, вызвавших данную реакцию.

События класса " n ", находящиеся по _{величине} $E^*_f - E^*_b$ вне выбранных границ, и случаи, попавшие внутрь границ, но содержащие γ -кванты, относились к реакции (4). В данном случае величину импульса нейтрона можно оценить лишь предположив некоторую эффективную массу улетевших нейтральных частиц.

Для всех случаев реакции (4) бралась одна и та же средняя эффективная масса нейтральных частиц, равная величине эффективной массы комбинаций ($p \pi^{\pm}$), при которой площадь экспериментального распределения по величине $M_{p \pi^{\pm}}$ делилась пополам ($\tilde{M}_{p \pi^{\pm}} \approx 1.4 \ \Gamma$ эв/с²). При этом оценочная величина импульса нейтрона P_{oll} оказывается сдвинутой в сторону больших значений по сравнению с P_{min} .

Используя статистику звезд с γ -квантами, нетрудно оценить долю событий пр→прπ⁺π⁻, попадающих по величине E^{*}_f - E^{*}_b, за пределы выбранных границ. Оказывается, что примесь в реакцию (4) от событий пр→прπ⁺π⁻ составляет ≈20%. Коэффициенты асимметрии для случаев реакции (4) равны:

$$a_{p} = \frac{\vec{p} - \vec{p}}{\vec{p} + \vec{p}} = -0,11 \pm 0,035 ; a_{n} = \frac{\vec{n} \cdot \vec{n} \cdot \vec{n}}{\vec{n} + \vec{n} \cdot \vec{n}} = +0,10 \pm 0,035$$
(12)

$$a_{\pi} = \frac{\overrightarrow{\pi} - \overleftarrow{\pi}}{\overrightarrow{\pi} - \overleftarrow{\pi}} = +0,21 \pm 0,035; \quad a_{\pi} = \frac{\overrightarrow{\pi} + \overleftarrow{\pi}}{\overrightarrow{\pi} + \overleftarrow{\pi}} = -0,015 \pm 0,035.$$

Здесь под значком " п " подразумевается частица с массой, равной эффективной массе нейтральных частиц. Нейтрон, как более тяжелая частица, почти полностью определяет направление движения эффективной массы.

Э

Видно, что коэффициенты асимметрии для π^+ – и π^- -мезонов хотя и имеют разные знаки, но отличаются по абсолютному значению.

В основном, это связано с тем, что импульс падающего нейтрона не может быть точно определен в каждом отдельном событии. Кроме этого, угловые распределения могут быть искажены примесью от других каналов реакций. Коэффициенты асимметрии получены из распределений, не поправленных на примесь из реакции (3). В л.с. π^+ -мезоны медленнее π^- -мезонов и вследствие этого многократное рассеяние ухудшает точность измерения импульсов и углов π^+ -мезонов по сравнению с π^- -мезонами, что может привести к искажению углового распределения π^+ -мезонов в с.ц.м. реакции.

В данных условиях выполнение соотношений изотопического сопряжения в пределах трех стандартных отклонений можно считать удовлетворительным.

3. Экспериментальная обработка 3- и 5-лучевых звезд позволяет получить импульсные спектры первичных нейтронов, вызвавших реакции (1)-(10)^{/12,14/}. Для получения общего спектра падающих нейтронов необходимо учесть вклад в полное сечение **пр** -взаимодействий однолучевых звезд, которые не обрабатываются в данном эксперименте. Звезды с большой множественностью (7,9 и т.д.) дают вклад, не превышающий 2%. Доля реакций с участием странных частиц составляет ≈ 1%. Наиболее существенно упругое рассеяние

(13)

Для получения спектра нейтронов, вызвавших реакцию (13), привлекались экспериментальные результаты /20/, полученные на фотографиях данного облучения. События упругого рассеяния выделялись χ^2 -методом с двумя степенями свободы, т.к. при просмотре отбирались события, где рассеянный нейтрон давал вторичную звезду.

При учёте вклада реакций

$$\begin{cases} pn \pi^{0} \\ nn \pi^{+} \\ pn (m \pi^{0}), m = 2,3, \dots \\ nn \pi^{+} (m \pi^{0}), m = 1,2, \dots \end{cases}$$
(14)

использовались следствия зарядовой симметрии и привлекались соотношения между каналами реакций, вытекающие из статистической теории /21/ Например,

$$\sigma_{nn\pi+} = \sigma_{pp\pi-}, \qquad (15)$$

$$\sigma_{pn\pi^0} = 1.57 \sigma_{pp\pi^-} . \tag{16}$$

Изотопическая инвариантность дает соотношение

$$\sigma_{pn\pi^{0}} = \frac{\sigma_{pn\pi^{+}}}{2} + \sigma_{pp\pi^{-}} - \sigma_{pp\pi^{0}}, \qquad (17)$$

которое на основе имеющихся экспериментальных данных /1-3, 5-7/ позволяет проверить правильность (16). В нашем импульсном интервале падающих нейтронов соотношение (16) отличается от экспериментального не больше, чем в 1,5 раза.

С другой стороны, правильность оценки вклада однолучевых звезд может быть проверена путем сравнения ожидаемого теоретического числа однолучевых событий на некотором количестве кадров с экспериментально наблюдавшимися. Теоретическое и наблюдавшееся числа звезд согласуются с учётом экспериментальных поправок в пределах одного стандартного отклонения.

Окончательные оценки показали, что привлечение выводов статистической теории может привести к неточности в определении сечений, не превышающей 10%.

Относительный спектр нейтронов, падающих на камеру, показан на рис. 4. Средний импульс $\vec{P}_n = 6,8$ Гэв/с. Заштрихованный правый край спектра не используется для получения сечений. Наиболее точно определена средняя часть спектра. На краях спектра (по 2 интервала слева-справа) приближения, использованные при его получении, увеличивают долю методической ошибки в определении сечений ~2 раза по сравнению со средней частью спектра. Вклад методической неточности в определение формы спектра в полную ошибку в некоторых случаях превышает 50%.

/12,22/ Спектры нейтронов, полученные несколько другими способами не сильно отличаются от приведенного на рис. 4, что указывает на его устойчивость к различного рода приближениям.

 Сечение отдельного канала реакции можно получить, используя соотношение

$$\sigma_{i}(\mathbf{p}) = \sigma_{tot} \quad (\mathbf{p}) \cdot \frac{\mathbf{n}_{i}(\mathbf{p})}{\sum_{i} \mathbf{n}_{i}(\mathbf{p})}, \quad (18)$$

где $\sigma_{tot}(p)$ – полное сечение **np** – столкновений в зависимости от импульса нейтрона; **n**_i(**p**) – число звезд i – той реакции при импульсе нейтрона **p**; суммирование ведется по всем реакциям, часть из которых регистрируется на опыте, а другая часть учитывается расчётным путем, как описано выше.

В наблюдавшееся в эксперименте число звезд внесены поправки: на потерю событий при просмотре, на потерю неизмеримых случаев, на примесь от других реакций. Полное сечение **пр** -взаимодействий достаточно точно ($\frac{\Delta \sigma_{\text{tot}}}{\sigma_{\text{tot}}} \approx 2-3\%$) известно в нашей области энергий

Сечения различных реакций в зависимости от импульса нейтрона приведены на рис. 5-11 и табл. I, II. На рис. 11 представлено отношение R сечений 5-лучевых σ_5 к сечению 3-лучевых звезд σ_8 . Неточность в определении сечений включает в себя статистические ошибки, методические – в определении формы импульсного спектра падающих нейтронов, ошибки в поправках, возникающих в эксперименте.

Приведены также литературные данные по сечениям неупругих реакций в пр -взаимодействиях.

В заключение отметим, что величины сечений, полученные в протонном облучении, находятся в удовлетворительном согласии с нашими данными.

Литература

1. Alexander et al. Nuclear Physics <u>B5</u>, 1, (1968).

- 2. J.D. Hansen et al. "Compilation of cross-sections" CERN-HERA 70-2, 1970.
- O. Benary et al. "NN and ND interactions (above 0,5 GeV/c) a compilation. UCRL-2000 NN, 1970.

- A.P. Batson et al. Proc. of the Royal Society of London, <u>251</u>, 233 (1959).
- 5. D.C. Brunt et al. Phys.Rev., <u>187</u>, 1856 (1969).
- H.O. Cohn et al. Nuclear Phys., <u>B21</u>, 505 (1970);
 H.O. Cohn et al. Phys.Letters, <u>26B</u>, 598 (1968).
- 7. A. Shapira et al. Phys. Rev. Letters, <u>21</u>, 1835 (1968).
- A. Shapira et al. Nuclear Phys., <u>B23</u>, 583 (1970);
 G. Yekutieli et al, Phys.Rev.Letters, <u>25</u>, 184 (1970).
- 9. T.W. Morris et al. Proc. of the XV Int.Conf. on High Energy Physics at Kiev, 1970.
- 10. Ван Ган Чан, М.И. Соловьев, Ю.Н. Шкобин. ПТЭ, <u>1</u>, 41 (1959).
- 11. Т. Бишлиу и др. Препринт ОИЯИ, Р-2916, Дубна, 1966.
- 12. В.И. Мороз, А.В. Никитин, Ю.А. Троян. ЯФ, 9, 4, 792 (1969).
- 13. А.П. Гаспарян, А.В. Никитин, Ю.А. Троян. ЯФ, 12, 5, 988 (1970).
- 14. В.И. Мороз, А.В. Никитин, Ю.А. Троян. ЯФ, <u>9</u>, 3, 565 (1969).
 В.И. Мороз, А.В. Никитин, Ю.А. Троян. Препринт ОИЯИ, Р1-3909, Дубна, 1968.
- 15. V. Franco et and R.J. Glauber. Phys.Rev., <u>142</u>, 1195 (1966);
 R.J. Glauber. Phys.Rev., <u>100</u>, 242 (1955);
 D.R. Harrington. Phys.Rev., <u>135</u>, B358 (1964).
- З.М. Иванченко, А.Ф. Лукъянцев, В.И. Мороз, А.Д. Макаренкова, Г.Н. Тентюкова. Препринт ОИЯИ, Р-2399, Дубна, 1965.
- А.П. Гаспарян, А.В. Никитин, Ю.А. Троян. Препринт ОИЯИ, Р1-5041, Дубна, 1970.
- А.П. Гаспарян, А.В. Никитин, Ю.А. Троян. Препринт ОИЯИ, Р1-4642, Дубна, 1969.
- А.П. Гаспарян, А.В. Никитин, Ю.А. Троян. Препринт ОИЯИ, Р1-5052, Дубна, 1970.

- 20. C. Besliu et al. Nuovo Cimento, <u>59A</u>, 1 (1969).
- 21. С.3. Беленький, В.М. Максименко, А.И. Никишов, И.Л. Розенталь. УФН, <u>62</u>, 1 (1957).V.S. Barasenkov, В.М. Barbasov, E.G. Bubelev. Nuovo Cimento, Suppl., <u>7</u>, 117 (1958).
- 22. А.П. Гаспарян, А.В. Никитин, Ю.А. Троян. Препринт ОИЯИ, Р1-5538, Дубна, 1971.
- 23. D.V. Bugg et al. Phys. Rev., <u>146</u>, 980 (1966).

Рукопись поступила в издательский отдел

3 марта 1971 года.

Г _и [Гэв/с] Тип реакции	I,662 Batson59*	I.825 Brunt 69*	2.II Buntkix	3.7 G:hn70*	6.98 Shapirailox	7,0 Shipitres
rpx-	2,7 <u>+</u> 0,6	2,57 <u>+</u> 0,14	2,68 <u>+</u> 0,19	3,2 <u>+</u> 0,6	-	I,0 <u>I+</u> 0,13
የም.አ.	-	0,16 <u>+</u> 0,03	0,35 <u>+</u> 0,04	3,6 <u>+</u> 0,7	-	а — се р
np##	-	0,77 <u>+</u> 0,07	I,75<u>+</u> 0,20	6,3 <u>+</u> I,0	3,72 <u>+</u> 0,22	-

ТАБЛИЦА І

ж) введены Глауберовы поправки /15/

таблица н

	Р _п [Гэв/с Тип реакции	I+2 :	2 + 3	3 + 4	4 + 5	5+ 6	6 + 7	7 4 8	8 + 9	9 + I0
	pp.I	3,00+ 0,90	2,20 <u>+</u> 0,60	I,90+ 0,30	I,15 + 0,20	I,20 <u>+</u> 0,20	I, 35+ 0,20	I,40+ 0,20	I,40+ 0,30	I,20 <u>+</u> 0,30
	("TIM) 7.99	-	I,2+ 0,5	2,0+ 0,5	2,60 <u>+</u> 0,5	2,7 <u>+</u> 0,5	2,9 <u>+</u> 0,5	2,0 <u>+</u> 0,4	2,3+ 0,5	2,6 <u>+</u> 0,6
	прятя-	I,0+ 0,6	8,6 <u>+</u> 2,0	7,5 <u>+</u> I,3	5,8 <u>+</u> I,0	4, <u>2+</u> 0,7	3,4 <u>+</u> 0,6	4,5 <u>+</u> 0,7	4,3 <u>+</u> 0,9	3,7 <u>+</u> 0,8
n	pxtx (mx)	0,5 <u>+</u> 0,4	4,3 <u>+</u> I,I	9,0 <u>+</u> 1 1,5	[1,0 <u>+</u>] 1,7	[0,3 <u>+</u> I,6	9,8 <u>+</u> I,5	7,8 <u>+</u> 1,2	5,9 <u>+</u> I,2	6,9 <u>+</u> I,4
nv	いたたち (いた)		-	-	I,8 <u>+</u> 0,5	3,3 <u>+</u> 0,6	3,5 <u>+</u> 0,7	4,0 <u>+</u> I,0	3,2 <u>+</u> 0,7	2,7 <u>+</u> 0,6
P P	$\mathcal{R}^{\dagger}\mathcal{R}^{\dagger}\mathcal{R}^{\dagger}$	0,2 <u>+</u> 0,2 ⁺	0,2+ 0,15	0,65 <u>+</u> 0,20	I,0 <u>+</u> 0,3	I,5 <u>+</u> 0,3	I,4 <u>+</u> 0,2	I,7 <u>+</u> 0,3	I,60 <u>+</u> 0,35	2,2 <u>+</u> 0,6
۲r	Λ . Τ. Τ. (m. T.)	-	-	0, <u>I+</u> 0,I	0,40 <u>+</u> 0,15	0,8 <u>+</u> 0,2	I,40 <u>+</u> 0,25	I, <u>6+</u> 0,3	I,60 <u>+</u> 0,35	I,65 <u>+</u> 0,40
rb;	$-\pi^{-}\pi^{+}\pi^{+}\pi^{-}$	-	8	0,08 <u>+</u> 0,05	0,9 <u>+</u> 0,2	I,60 <u>+</u> 0,25	I,8 <u>+</u> 0,3	2,0+ 0,35	I,4 <u>+</u> 0,4	I,6 <u>+</u> 0,4
Nbi	("πm) π.π ⁺ π ⁺ π"	-	-	-	- 1	-	0,25 <u>+</u> 0,15	0,3 <u>+</u> 0,1	I,6 <u>+</u> 0,5	2,2 <u>+</u> 0,6
nnTtrn	("Tm) T T TTT."	-	-	0,06 <u>+</u> 0,05	0,25 <u>+</u> 0,15	0,35 <u>+</u> 0,15	0,70 <u>+</u> 0,25	0,5 <u>+</u> 0,2	0, <u>6+</u> 0,3	0,75+ 0,35
	Вы¥ луче-	4,5 <u>+</u> I,3	16,3 <u>+</u> 2,0	20,5 <u>+</u> 2,5	22,3 <u>+</u> 2,5	21,7 <u>+</u> 2,0 ⁷ +	21,0 <u>+</u> 2,0	19,7 <u>+</u> 1,5	17,0 <u>+</u> 2,0	17,0 <u>+</u> 2,0
	5-ти лу- чевые	0,2 <u>+</u> 0,2	0,20 <u>+</u> 0,15	0,90 <u>+</u> 0,25	2,55 <u>+</u> 0,40	4,25 <u>+</u> 0,60	5,55 <u>+</u> 0,90	6,I <u>+</u> I,O	6,8 <u>+</u> 1,5	8,4 <u>+</u> 1,8
	$R = \frac{\sigma_{\sigma}}{\sigma_{3}}$	0,045 <u>+</u> 0,045	0,0I2 <u>+</u> 0,009	0,044 <u>+</u> 0,013	0,11 <u>+</u> 0,02 ⁻	0,20 <u>+</u> 0,035	0,26 <u>+</u> 0,05	0,3I <u>+</u> 0,06	0,4 <u>+</u> 0,1 ⁻	0,50 <u>+</u> 0,12
	x)									_

х) по количеству событий с У -квантами было определено, что в данной реакции в основном рождается один П° -мезон.

Рис. 5. Сечение реакций $np \rightarrow pp \pi^-$ и $np \rightarrow pp \pi^-$ (m π^0), m = 1,2,...

Рис. 6. Сечение реакции $np \rightarrow np \pi^+ \pi^-$

Рис. 7. Сечение реакций $np \rightarrow np \pi^+ \pi^- (m \pi^0), m = 1, 2, ...$ $nn \pi^+ \pi^- (m \pi^0), m = 0, 1, 2, ...$

21

И

Рис. 10. Сечение образования 5-лучевых звезд.

Рис. 11. Отношение сечений образования 5- и 3-лучевых звезд.