29, 1971, T. 14, Ann. 2, c. 367-370 3/1-71 Д-255 объединенный ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна. P1 - 5633 1407/2-

П.А. Девенски, В.Й. Заячки, З.М. Златанов Н.Л. Иков, П.К. Марков, Л.Д. Минчева Л.Г. Христов, Х.М. Чернев

> УПРУГОЕ _{РР} И рарассеяние при энергии 50 и 70 гэв

Adbepatepng Bu(ekmX 3HEPIM

P1 - 5633

П.А. Девенски**, В.Й. Заячки, З.М. Златанов**, Н.Л. Иков*, П.К. Марков, Л.Д. Минчева**, Л.Г. Христов**, Х.М. Чернев*

УПРУГОЕ рр И рd РАССЕЯНИЕ ПРИ ЭНЕРГИИ 50 И 70 ГЭВ

Направлено в ЯФ

GJDERHHEIMEN HECKINYT NECTURIX ECCICACIZATION **ENGINOTEKA**

Физический институт Болгарской Академии Наук Высший Химико-технологический институт - София В настоящем эксперименте, выполненном на ускорителе в Серпухове, определены дифференциальные сечения упругого р-р и р-d рассеяния при энергии 50 и 70 Гэв соответственно.

Внутренний протонный пучок многократно проходил сквозь тонкую мишень толщиной ≈1 мкм и площадью (40 x7) мм². В р-р рассеянии использовалась полиэтиленовая мишень, а в р-d рассеянии – мишень из дейтрированного полиэтилена. Вторичные частицы были детектированы с помощью четырех фотоэмульсионных камер, установленных на расстоянии ≈ 3600 мм от мишени. Просмотр эмульсионных слоев, измерение пробегов вторичных частиц, вылетевших в угловой интервал 79-90°, и определение дифференциальных сечений были проведены так же, как в работах /1-3/, где был предложен и использован этот метод исследования упругого р-р и р-d рассеяния.

Для зависимости амплитуды упругого рассеяния от квадрата переданного четырехмерного импульса і принималось следующее параметрическое представление:

$$A = (a+i)\sqrt{\left(\frac{d\sigma}{dt}\right)_{opt}} \exp\left(\frac{1}{2}bt + \frac{1}{2}ct^{2}\right), \qquad (1)$$

где параметры b и с являются положительными величинами, а $a = \operatorname{Re} A(0) / \operatorname{Im} A(0)$ – отношением реальной части амплитуды упруго-го рассеяния к мнимой для t = 0.

Определенные нами значения дифференциальных сечений (табл.1) использовались для определения параметра наклона дифракционного пика

$$b = \frac{d}{dt} \left(\ln \frac{d\sigma}{dt} \right)_{t=0}$$
 (2)

Поскольку измерение сечений производилось частично в области, где нельзя пренебречь влиянием кулоновского взаимодействия, при определении параметров b и с в выражении ^{/1/} использовалась интерференционная формула Бете ^{/4/}. В этой формуле значения величины а задавались в соответствии с теоретическими расчетами по дисперсионным соотношениям ^{/6,7/}. Оптические точки были вычислены на основе экстраполяционных формул ^{/5,6/} экспериментальных данных по полным сечениям

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t}\Big)_{\mathrm{opt}}^{\mathrm{p-p}} = 76.0 \ \frac{\mathrm{M}\sigma}{(\Gamma_{\mathrm{B}}/\mathrm{c})^2}; \qquad \left(\frac{\mathrm{d}\sigma}{\mathrm{d}t}\right)_{\mathrm{opt}}^{\mathrm{p-d}} = 251.6 \ \frac{\mathrm{M}\sigma}{(\Gamma_{\mathrm{B}}/\mathrm{c})^2}$$

Экспериментальные данные для дифференциальных сечений, нормированные на основе формулы Бете, приведены в табл. 1 вместе с их статистическими ошибками.

Полученные по методу наименьших квадратов зависимости дифференциальных сечений от t представлены на рис. 1.

В пределах точности данного эксперимента и исследуемой области t зависимость дифференциального сечения p-p рассеяния $\ln \frac{d\sigma}{dt} = f(t)$ оказалась линейной, поэтому дальше в расчетах было положено $c = 0^{-1}$. Для параметра наклона дифференциального сечения p-p рассеяния при 50 Гэв было получено

 $b = (11,06+0,28) (\Gamma_{B}/c)^{-2}$

Рис. 1. Дифференциальные сечения упругого p-p и p-d расс р-р при энергии 50 Гэв, р-д при энергии 70

5

Таблица 1

Дифференциальные сечения упругого р-р рассеяния при энергии 50 Гэв и упругого р-d рассеяния при энергии 70 Гэв

Θ ⁰ _{C•U•M•}	— t (Гэв/с) ²	dσ/dt _{Mб} /(Гэв/с) ²			
р- р- упругое рассеяние					
1,32	0,0124	69 , 7 <u>+</u> 2,0			
1.44	0,0148	71,8 ± 2,5			
1.56	0,0174	71,1 <u>+</u> 2,4			
1.84	0,0242	60,7 <u>+</u> 1,5			
2,50	0,0447	48,7 <u>+</u> 1,6			
2.51	0,0450	48 ,7 <u>+</u> 2 , 2			
2,95	0,0622	36,3 <u>+</u> 1,0			
3.54	0,0895	29,82+ 0,82			
3.73	0,0994	25,81+ 0,72			
4,10	0,1201	21,82+ 0,64			
	р-d - упругое расс	еяние			
0,70	0,0097	176,3 <u>+</u> 4,8			
0,76	0,0114	161,7 ± 4,7			
0,78	0,0122	164,4 + 5,3			
0,83	0,0137	149,1 + 4,6			
0,86	0,0146	145,6 + 4,6			
0,90	0,0161	137,0 ± 3,9			
0.98	0,0191	119,7 <u>+</u> 3,4			
1.02	0,0205	114 , 7 <u>+</u> 3,3			
1,08	0,0231	106,3 + 3,1			
1.52	0,0461	.46,4 + 1,2			
1.59	- 0,0506	39,6 <u>+</u> 1,0			
1.79	0,0638	25,06+ 0,68			

6

1,89	0,0712	21,48	+ 0,68
1,96	0,0768	16,38	+ 0,48
2,15	0,0930	10,87	+ 0,37
2,25	0,1020	8,46	<u>+</u> 0,29
2,83	0,1594	2,44	+ 0,19
2,95	0,1732	1,72	<u>+</u> 0,23

Рис. 2. Параметр наклона дифракционного конуса p-d взаимодействия – Н. Далхажав и др. /3/, – настоящая работа.

с $\chi^2 = 17,6$ при 11 степенях свободы. Этот результат хорошо согласуется с результатами работ ^{/8,9/}, где вторичные частицы регистрировались с помощью полупроводниковых детекторов, работающих на линии связи с ЭВМ. Таким образом, и настоящая работа подтверждает сделанный там вывод о сужении с ростом энергии дифракционного конуса для p-p взаимодействия.

При подгонке экспериментальных данных упругого pd рассеяния для значений параметров b и с получено:

$$b = (40,7 \pm 0,7) (\Gamma_{\Im B}/c)^{-2}$$

$$c = (70,3 \pm 5,3) (\Gamma_{\Im B}/c)^{-4}$$

с χ^2 = 9,8 при 19 степенях свободы. Неточность в значении параметра а порядка $\Delta a = \pm 0,1$ приводит к изменению параметров b и с меньше, чем на 2%.

На основе оптической модели были определены радиусы р-р и p-d взаимодействия при 50 и 70 Гэв соответственно:

> r_{pp} = (1,313±0,017) ферми r_{pd} = (2,517±0,020) ферми.

На рис. 2 и 3 приведены параметры дифракционного конуса упругого p-d рассеяния в области высоких энергий (Е л.с.к. > 5 Гэв). По оси абсцисс нанесен квадрат полной энергии в с.ц.м. (s), а по оси ординат - соответственно значения параметров b и с . Как видно из этих данных, есть основание считать, что с ростом энергии дифракционный конус упругого p-d рассеяния сужается, а радиус сильного взаимодействия возрастает.

8

Рис. 3. Зависимость параметра с (формула 1) от энергии. - Н. Далхажав и др. ^{/3/}, – настоящая работа.

Авторы весьма признательны В.А. Свиридову, В.А. Никитину,

Л.С. Золину и М.Г. Шафрановой за помощь в облучении эмульсии и ценные обсуждения.

Авторы благодарны проф. А.А. Логунову и Р.М. Суляеву за предоставленную возможность облучить эмульсии на ускорителе в Серпухове.

Литература

- 1. В.А. Никтин, А.А. Номофилов, В.А. Свиридов, Л.Н. Струнов, М.Г. Шафранова. ПТЭ, <u>6</u>, 18 (1963).
- 2. Л.Ф. Кириллова, В.А. Никитин и др. ЯФ, 1, 533 (1965).
- S. Н. Далхажав, П. Девински и др. ЯФ <u>8</u>, 342 (1968).
- 4. H. Bethe. Ann. of Phys., 3, 170 (1958).
- 5. G. Bialkowski, S. Pokorski, Nuovo Cim. 57A, 219 (1968).
- 6. Ю.С. Вернов. ЯФ <u>3</u>, 877 (1966).
- 7. P. Soding. Phys.Lett., 8, 286 (1963).
- 8. Г.Г. Безногих, А. Буяк и др. ЯФ <u>10.</u> 1212 (1969).
- 9. G.G.Beznogikh, A.Buyak et al., Phys.Lett., vol.<u>30B</u>, 274, (1969); Preprint JINR, E1-4628 (1969).

Рукопись поступила в издательский отдел 22 февраля 1971 года.