

С.М.Коренченко, Б.Ф.Костин, Г.В.Мицельмахер, К.Г.Некрасов, В.С.Смирнов

## ПОИСКИ РАСПАДА $\mu^+ \rightarrow e^+ + e^+$

1970

## P1 - 5542

 $\mu^+ \rightarrow e^+ + e^+ + e^-$ 

С.М.Коренченко, Б.Ф.Костин, Г.В.Мицельмахер, К.Г.Некрасов, В.С.Смирнов



Направлено в ЯФ



The  $M^+ \rightarrow e^+ + e^+ + e^-$  decay was searched for with the help of a cylindrical spark chamber placed in the 4500 Oe magnetic field<sup>/4/</sup>. Scintillator counter pulses were displayed on the five-ray oscilloscope screen. With 1.1.10<sup>10</sup> stopped pions about 300 thousand pairs of pictures were taken. After previous scanning 226 events were selected, measured and calculated by the computer. With the help of the  $\chi^2$  criteria the consistency of the taken events to the geometrical requirements and to the kinematics of the  $M^+ \rightarrow e^+ + e^+ + e^$ decay was established. The events with such a value of  $\chi^2$  when its probability is smaller than 5% were rejected. Besides, the events were considered as background and rejected if the angle between  $e^+$ and  $e^-$  was  $130^\circ \pm 20^\circ$ , and the energy difference of  $e^+$  and  $e^-$  was not larger than 10-20 MeV taking into account the energy losses in the target. Such events can be imitated by one positron or electron passing through the whole chamber.

As a result, not a single event could be regarded as the  $M^+ \rightarrow e^+ + e^- + e^-$  decay.

The detection efficiency of the  $M^+ \rightarrow e^+ + e^+ + e^-$  decay was calculated by the monte Carlo method taking into account chamber geometry and triggering conditions. The decay matrix element was taken constant. After introducing necessary corrections ( for triggering system efficiency, camera dead time, spark chamber efficiency, etc.) the detection efficiency of the  $M^+ \rightarrow e^+ + e^+ + e^-$  decay was obtained to be  $3.4*10^{-2}$ .

This permits the upper limit of the branching ratio to be established as

 $W(\mu^{+} \rightarrow e^{+} + e^{+} + e^{-}) / W(\mu^{+} \rightarrow e^{+} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}) \le 6.2 \cdot 10^{-9}$ with a 90% confidence level.

Результаты нейтринных экспериментов  $^{/1/}$  показали, что электронное и мюонное нейтрино нетождественны. Тем не менее эти эксперименты не могут полностью исключить возможность нарушения закона сохранения лептонного заряда. Поэтому поиски таких фундаментальных распадов, как  $\mu \rightarrow e + y$  или  $\mu \rightarrow e + e + e$ , должны произволиться с максимальной точностью, обеспечиваемой современным состоянием методики эксперимента. Верхняя граница героятности распада  $\mu^+ \cdot e^{-t} + e^{-t} + e^{-t}$ была ранее установлена на уровне  $(1,25-1,5)\cdot10^{-7}$  от вероятности обычного распада . Ниже описываются результаты, эксперимента, в котором получено значение этой границы в  $\approx 20$  раз меньшее, чем ранее определенное.

Поиски распада µ<sup>+</sup> · e<sup>+</sup>+ e<sup>+</sup>+ e<sup>-</sup> производились с помошью описанной ранее цилиндрической искровой камеры, помещенной в магнитное лоле<sup>/4/</sup>. Напряженность магнитного поля равнялась 4500 э · Импульсы от сцинтилляционных счётчиков регистрировалясь 5-лучевым скоростным осциллографом. В центре камеры размещалась мишень, в которой останавливались π<sup>+</sup> - мезоны (см. рисунок).

Всего было остановлено в мишени 1,1·10 $^{10} \pi^+$ -мезонов и получено  $\approx 300$  тыс. пар фотографий, на которых мог наблюдаться распад  $\mu^+ \rightarrow c^+ + c^+ + c^-$ .

Предварительный отбор событий был произведен по следующим критериям:

3

1. Имеется два позитронных и один электронный трек.

2. Все треки доходят до внешнего ряда сцинтилляционных счётчиков.

3. Все треки проходят через разные сцинтилляционные счётчики.

4. На каждом треке должно быть не менее 5 искр.

5. На экране осциллографа должны быть импульсы от соответствующих сцинтилляционных счётчиков.

В результате было отобрано и измерено 226 событий. Данные измерений были обработаны на ЭВМ. С помощью критерия  $\chi^2$  устанавливалось соответствие зарегистрированных событий геометрическим требованиям и кинематике распада  $\mu^{+} \rightarrow e^{+} + e^{-}$ . События с величиной  $\chi^2$ , вероятность которых меньше 5%, отбрасывались. Кроме того, событие считалось фоновым и отбрасывалось в том случае, если угол между треками  $e^+$  и  $e^-$  составлял  $180^{\circ}\pm20^{\circ}$  и энергии электрона и позитрона в зависимости от их среднего значения отличались не более чем на 10-20 Мэв с учётом потери энергии в мишени, так как такие два трека могут быть имитированы одним позитроном или электроном, прошедшим через всю камеру. Введение этого критерия лишь на 15% уменьшает эффективность регистрации распада  $\mu^+ \rightarrow e^+ + e^+$ 

В результате такой обработки оказалось, что ни одно событие не может быть интерпретировано как распад  $\mu^+ \rightarrow e^+ + e^-$ .

Распределение событий по  $\chi^2$  позволяет заключить, что ожидаемый фон пренебрежимо мал.

Эффективность регистрации распада µ<sup>+</sup> → e<sup>+</sup>+ e<sup>+</sup>+ e<sup>-</sup> с учётом геометрии камеры и схемы запуска рассчитывалась методом Монте-Карло в предположении, что матричный элемент распада const.

После внесения необходимых поправок (на эффективность системы запуска, на мертвое время фотокамер, на эффективность искровой камеры и т.п.) эффективность регистрации распада µ<sup>+</sup>→ e<sup>+</sup>+ e<sup>+</sup>+ e<sup>-</sup> оказалась равной 3,4•10<sup>-2</sup>. Это поэволяет установить, что

4

## $W(\mu^+ \rightarrow e^+ + e^+ + e^-) / W(\mu^+ \rightarrow e^+ + \nu_e^- + \bar{\nu}_{\mu}) \leq 6.2.10^{-9}$

на уровне 90% достоверности.

Авторы выражают благодарность В.А. Енчевич за просмотр снимков.

## Литература

- G. Danby, J. Gaillard, R. Goulianos, M. Lederman, N. Mistry, M. Schwartz and J. Steinberger. Phys.Rev.Letters., <u>9</u>, 36 (1962).
- А.И. Бабаев, М.Я. Балац, В.С. Кафтанов, Л.Г. Ландсберг, В.А. Любимов,
  Ю.В. Обухов. ЖЭТФ, <u>43</u>, 1964 (1962).
- 3. S. Francel, W. Frat, J. Halpern, L. Holloway, W. Wales. Phys. Rev., <u>130</u>, 351 (1963).
- 4. С.М. Коренченко, А.Г. Морозов, К.Г. Некрасов, Ю.В. Роднов. Сообщение ОИЯИ, P13-5170, Дубна, 1970.

Рукопись поступила в издательский отдел 25 декабря 1970 года.



Разрез камеры в плоскости, перпендикулярной к пучку *п* -мезо-нов.