Яф, 1971, Т. 13л6, С. 1202-1204 275/1-71 332.3 СООБШЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯЛЕРНЫХ ИССЛЕДОВАНИЙ **Дубна** P1 - 5482

М. Двораковский, Б. Словинский, З. Стругальский, Б. Яновская

СЕЧЕНИЕ ОБРАЗОВАНИЯ ЭЛЕКТРОННО-ПОЗИТРОННЫХ ПАР ГАММА-КВАНТАМИ С ЭНЕРГИЕЙ ОТ 35 ДО 2000 МЭВ В ЖИДКОМ КСЕНОНЕ

1970

BDICOKMX JHEPINH

AA60PATOPH9

P1 - 5482

М. Двораковский, Б. Словинский, З. Стругальский,

Б. Яновская

СЕЧЕНИЕ ОБРАЗОВАНИЯ ЭЛЕКТРОННО-ПОЗИТРОННЫХ ПАР ГАММА-КВАНТАМИ С ЭНЕРГИЕЙ ОТ 35 ДО 2000 МЭВ В ЖИДКОМ КСЕНОНЕ

> Сбъеденошный блатнут (весрених весподования) БИБЛИОТЕНА

Вработе определено сечение образования электронно-позитронных пар гамма-квантами с энергией от 35 до 2000 Мэв в жидком ксеноне. Исследования выполнены на снимках с ксеноновой пузырьковой камеры Лаборатории высоких энергий Объединенного института ядерных исследований.

Экспериментально определенные сечения сравниваются с результатами расчёта. Такого рода сравнение представляет интерес с точки зрения проверки правильности применяемых в расчётах приближений. Результаты могут быть полезны при решении и прикладных задач, в которых рассматривается прохождение гамма-лучей через вещество. В частности, они пригодны при решении методических проблем, возникающих при опытах, которые проводятся на пузырьковых камерах, наполненных тяжелыми жидкостями.

1. Метод

На снимках с 26-литровой ксеноновой пузырьковой камеры ЛВЭ ОИЯИ можно наблюдать процесс развития ливней с энергиями не больше нескольких Гэв. Размеры этой камеры 13,5 х 6,8 х 4 t_0^3 ($t_0 =$ = 4,1 см, т.е. – $t_0 = 8,8$ г/см²). Имеется возможность определять энергии E_{γ} каждого зарегистрированного гамма-кванта с точностью, близкой 10%, если 10 Мэв $\leq E_{\gamma} \leq 3000$ Мэв, а также измерять длины конверсии гамма-квантов с точностью до 1 мм.

3

Для определения сечения процесса генерации электронно-позитронных пар на снимках выбирались ливни, созданные гамма-квантами и удовлетворяющие следующим критериям.

 а) Ливни полностью развиваются в камере (расстояние от наблюдаемого конца ливня до ближайшей стенки камеры, по оси ливня, не меньше трех радиационных единиц для ливней с энергиями ≤ 100 Мэв, двух – для ливней с энергиями от 100 до 300 Мэв и одной – для ливней с энергиями от 300 до 2000 Мэв. Отклонение осей ливней от направления пучковых треков, проходящих почти параллельно к плоскости фотографирования, не превышает Θ ≈ 5⁰.

б) В области развития выбранного ливня нет фоновых
следов от других ливней и взаимодействий.

в) Выбранные ливни имеют такие суммарные длины следов электронов и позитронов Σ R_e±, которые заключаются в определенных пределах значений, соответствующих выбранным значениям E_γ ±Δ E_γ^{/1/}

В каждом отобранном случае измерялась суммарная длина $\Sigma R_{e} \pm$ следов ливневых электронов и позитронов с точностью 5%, длина конверсии λ_{i} первичного гамма-кванта и его потенциальная длина конверсии в камере L_{i} . Для класса ливней, соответствующих данной энергии E_{γ} , вычислялась средняя длина конверсии $\bar{\lambda}$ по формуле

$$\overline{\lambda} = \frac{1}{n} \sum_{i=1}^{n} \left[\lambda_i + \frac{L_i}{\frac{L_i}{e^{\lambda} - 1}} \right] , \qquad (1)$$

где п – число ливней. Сечение $\sigma_{\gamma} [E_{\gamma}]$ вычислялось по формуле $\sigma_{\gamma} [E_{\gamma}] = \overline{\mu} (E_{\gamma}) - \frac{A}{N}$. (2)

A – атомный вес, N – число Авогадро, μ (E $_{\gamma}$) = $\overline{\lambda}^{-1}$ (E $_{\gamma}$).

2. Экспериментальные данные

Было просмотрено свыше 100000 снимков с камеры, облученной в пучке π^+ -мезонов с импульсом 2,34 Гэв/с, и отобрано 6658 ливней, созданных гамма-квантами и удовлетворяющих принятым критериям отбора. Эффективность двукратного просмотра составляла 98%.

Распределение ливней по E_{γ} дано в таблице. В ней приведены значения длин конверсий $\overline{\lambda}$ и полных сечений σ_{γ} образования электронно-позитронных пар. Указаны значения статистических ошибок.

3. Обсуждение данных

Полученные экспериментальные данные сравнивались с результатами расчёта $\sigma_{\gamma}^{m}(E_{\gamma})$ для жидкого ксенона ^{/4/}. Они выписаны в таблице. Там же приведено соотношение $(\sigma_{\gamma}^{9} - \sigma_{\gamma}^{m})/\sigma_{\gamma}^{m}$ в процентах.

Наблюдаемая разница значений, полученных экспериментально и путем расчёта, происходит, по-видимому, из-за неправильного учёта поправок к борновскому приближению, справедливому при условии $\frac{Z}{137} \ll 1$ и не пригодному при больших атомных номерах Z , как это имеет место в нашем случае.

На рисунке показана зависимость от энергии коэффициента поглощения гамма-квантов вследствие образования пар, полученная экспериментально.

В дальнейшем мы продолжим набор экспериментальных данных в диапазоне значений энергий Е $_{\gamma}$ \leq 300 Мэв.

5

- З.С. Стругальский. Материалы совещания по методике пузырьковых камер. Препринт ОИЯИ, 796, Дубна, 1961; Л.П. Коновалова, Л.С. Охрименко, З.С. Стругальский. Препринт ОИЯИ, Р-700, Дубна, 1961; ПТЭ, <u>6</u>, 261 (1961); И.А. Ивановская, Т. Канарек, Л.С. Охрименко, Б. Словинский, З.С. Стругальский, И.В. Чувило, З. Яблонский. Препринт ОИЯИ, Р1-3317, Дубна, 1967.
- 2. W.L. Alford and R.B. Leighton. Phys. Rev., 90, 622 (1953).
- Б. Ничипорук, Б. Словинский, З.С. Стругальский. Препринт ОИЯИ, P-2808, Дубна, 1966.
- 4. Я. Бэм, В.Г. Гришин. Препринт ОИЯИ, Р-2631, Дубна, 1966.

Рукопись поступила в издательский отдел 26 ноября 1970 года.

Ta	бл	Ш	8

Ey± DEy [MeV]	N۶	λ [t]]	6 [°] ± Δ6 [°] (барн)	6 ж (барн)	$\frac{6_{y}^{m}-6_{y}^{a}}{6_{y}^{m}}$
35 <u>+</u> 5,2	195	4,2	6,03 <u>+</u> 1,02	10,83	+ 44 ± 9
50 ± 7,5	577	3,1	7,89 ± 0,65	12,35	+ 36 + 5
70 <u>+</u> 10,5	657	2,0	12,50 ± 0,71	13,60	+ 8 ± 5
100 ± 15,0	1047	1,7	14,62 + 0,61	14,80	+ 1 + 4
150 + 22,5	982	1,4	17,20 ± 0,66	15,95	- 8 - 5
2 1 0 <u>+</u> 31,5	574	1,3	21,01 ± 0,91	16,76	- 26 + 6
275 ± 40,7	451	1,3	18 , 34 <u>+</u> 0,92	17,28	- 6 - 6
350 ± 52,5	397	1,3	20,13 + 1,06	17,69	- 14 <u>+</u> 6
450 ± 67,5	378	1,4	17,88 ± 0,97	18,04	+ 1 <u>+</u> 5
600 ± 90,0	421	1,3	19,63 <u>+</u> 1,05	18,38	- 7 ± 5
800 ± 120,0	317	1,2	19,92 ± 1,21	18,65	- 7 <u>+</u> 8
1100 ± 165,0	382	1,3	18,87 ± 1,09	18,89	- 1 <u>+</u> 8
1650 ± 247,5	280	1,2`	20,93 + 1,36	19,12	- 10 ± 7
2000 <u>+</u> 300,0	1293	1,3	19,00 ± 0,80	19,22	+ 1 + 5
an a					

- средняя длина конверсии;

- эффективное сечение, эксперимент;

λ 6° 6°

эффективное сечение, теория.

