5293

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Million and

Дубна

P1 - 5293

Эна. чит. зала

Л.С. Ажгирей, И.К. Взоров, В.Н. Жмыров, А.С. Кузнецов, М.Г. Мещеряков, Г.Д. Столетов, А.Ф. Филозов, В.И. Чижиков

ПОЛЯРИЗАЦИЯ ВТОРИЧНЫХ ПРОТОНОВ В РЕАКЦИЯХ **рр** — **π** + **рп** И **рр** — **π** 0 **рр** ПРИ 669 Мэв

P1 - 5293

Л.С. Ажгирей, И.К. Взоров, В.Н. Жмыров, А.С. Кузнецов, М.Г. Мещеряков, Г.Д. Столетов, А.Ф. Филозов, В.И. Чижиков

ПОЛЯРИЗАЦИЯ ВТОРИЧНЫХ ПРОТОНОВ В РЕАКЦИЯХ $pp \rightarrow \pi^+ pn$ и $pp \rightarrow \pi^0 pp$ ПРИ 669 Мэв

Направлено в ЯФ

Введение

энергии ~ 660 Мэв суммарный вклад неупругих процессов При $pp \rightarrow \pi^+ d$ и $pp \rightarrow \pi^0 pp$ в полное сечение pp $pp \rightarrow \pi^+ pn$ взаимодействия только немногим меньше вклада упругого рр -рассеяния. Уже в первых работах по фазовому анализу в с -рассеяния при этой энергии выявилось, что характер получаемых решений и их однозначность существенно зависят от предположений относительно механизма неупругих процессов. Оказалось, что для удовлетворительного описания экспериментальных данных необходимо учиты -¹ D_, такив ³ F₂, вать мезонообразование как в ³ Р и состояниях вр -системы. Значительное поглощение, найденное для ³ F_{2.3} -состояний, было расценено в /4/ как качественное указание на то, что неупругое рр -взаимодействие в области 660 Мэв в какой-то мере носит периферический характер. Это обстоятельство указывает на возможность описания механизма мезонособразования в рр -соударениях с помощью диаграмм, учитывающих обмен только одним виртуальным пионом.

Модель однопионного обмена, модифицированная введением формфакторов нуклонов, хорошо описывает экспериментальные данные об энергетических спектрах вторичных нуклонов в процессах одиночного образования пионов при энергиях 0,97; 2 и 2,85 Гэв^{/5/}. Недавно периферическая модель применялась также для интерпретации данных об образовании π^0 -мезонов в pp -соударениях при

610 Мэв^{/6/}: оказалось, что эта модель хорошо воспроизводит угловые распределения вторичных протонов в случае малой передачи импульса.

Следует отметить, что дифференциальные сечения образования вторичных частии в реакциях NN → NN π . вычисленные в рамках однопионной обменной модели, в основном, пропорциональны сумме квалратов модулей амплитуд виртуального *п* N -рассеяния⁵. Поэтому при энергиях ≈ 1 Гэв основной вклад в вычисленные угловые распределения и энергетические спектры вторичных частиц дает резонансная Раз -амплитуда, тогда как роль остальных состояний сравнительно невелика. С другой стороны, выражения для поляризации вторичных нуклонов или асимметрии испускания пионов, образованных поляризованными нуклонами , содержат члены, представляющие собой в основном интерференцию резонансной амплитуды с нерезонансными. В связи с этим экспериментальное исследование поляризационных эффектов в неупругих нуклон-нуклонных взаимодействиях (интересное само по себе, поскольку данные такого рода в настоящее время почти полностью отсутствуют) и интерпретация их в рамках однопионной обменной модели дают возможность проверить некоторые предсказания этой модели, а также выяснить роль нерезонансных амплитуд *п* N - рассеяния и их поведение вне массовой поверхности.

Данные о поляризации в неупругом рассеянии могут оказаться полезными также и для проверки резонансной модели NN -взаимодействия Мандельстама^{/8/}. До последнего времени эта модель довольно успешно применялась для описания процессов одиночного образования π -мезонов в pp -взаимодействиях. Однако недавно^{/9/} отмечалось наличие при 660 Мэв расхождения между наблюдавшейся угловой зависимостью формы спектра π⁺ -мезонов в реакции pp → π⁺pp и предска заниями резонансной модели.

В настоящей статье описываются эксперименты, в которых была измерена поляризация вторичных протонов от реакций

$$pp \rightarrow \pi^{+} pn , \qquad (I)$$

$$pp \rightarrow \pi^{0} pp . \qquad (II)$$

которые могут быть представлены четырьмя периферическими диаграммами однопионного обмена, приведенными на рис. 1. Недавно в работе^{/10/} в рамках развитого Феррари и Селлери^{/5/} варианта однопионной обменной модели одиночного образования *п*-мезонов в NN соударениях были получены выражения для поляризации вторичных протонов в реакциях I и II с учетом указанных четырех периферических диаграмм и интерференции между ними, но без учета взаимодействия нуклонов в конечном состоянии. Эти выражения были использованы для интерпретации результатов измерений поляризации вторичных протонов.

Метод измерения поляризации протонов

Схема эксперимента показана на рис. 2. Выведенный из синхроциклотрона и сфокусированный квадрупольными линзами L неполяризованный пучок протонов сечением 1,5х1,5 см² падал на жидководородную мишень T_1 , в центре которой энергия протонов составляла 669 ± 5 Мэв. Пучок вторичных частиц, испущенных из мишени под углом θ_1 , величина которого в трех сериях измерений равнялась $8,3^\circ$, 14,5° и 18,0°, формировался коллиматорами K_1 и K_2 . Ширины шелей этих коллиматоров выбирались так, чтобы исключить возможность прохождения через них вторичных частиц, испущенных из тех участков стенок мишени T_1 , на которые падал первичный пучок протонов.

Рис. 1. Периферические диаграммы одиночного образования *п* -мезонов в нуклоннуклонных соударениях. Сплошные линии представляют нуклоны, штриховые *п* - мезоны.

Рис. 2. Схема эксперимента. L - квадрупольные линзы; T₁ мишень; K₁, K₂, K₃, K₄ - коллиматоры; H - магнит; C₁, C₂, C₃, C₄ - сцинтилляционные счетчики; SC - искровая камера.

Импульсные спектры прошедших через коллиматоры К, иК, вторичных заряженных частиц были измерены при помощи магнитного анализатора, импульсное разрешение <u>А р</u>которого для указанных углов соответственно равнялось 1,5, 2 и 3,5%. Полученные импульсные спектры приведены на рис. 3. Для систематических измерений поляризации вторичных протонов от реакций I иII под всеми углами испускания в непрерывных спектрах выбирались узкие полосы с энергией протонов около 370 Мэв; этому участку энергетического спектра вторичных протонов соответствовали в энергетических спектрах π^{+} и π^{0} -мезонов участки шириной от 30 до 150 Мэв ($\theta_{1} = 8.3^{\circ}$). от 14 до 125 Мэв (θ_1 =14.5°) и от 8 до 120 Мэв (θ_1 =18.0°). В случае, когда угол испускания был равен 8,3°, в выделяемой полосе спектра вторичных протонов содержалась незначительная примесь дейтронов с импульсом 885 Мэв/с от реакции pp → π⁺ d , которые полностью отделялись от протонов по времени пролета между счетчиками С, и С,

Заметное на всех спектрах размытие левой стороны пиков, соответствующих упругому рр -рассеянию, было обусловлено в первую очередь торможением и многократным рассеянием протонов в стенках коллиматоров и приводило к появлению некоторой примеси упруго рассеянных протонов среди вторичных протонов от реакций | иП Процедура определения величины этой примеси состояла в следующем: 1) слабо расходящийся первичный пучок протонов направлялся через ту же систему коллиматоров К, и К, на центр анализирующего магнита; 2) измерялась форма пика, соответствующего первичному пучку протонов, и прослеживался его хвост до низких значений импульсов: 3) полученный таким образом пик нормировался к одинаковой высоте с пиками, соответствующими упругому рр-рассеянию. Затем производилось сравнение формы этих пиков путем их совмещения.

от реакций I и II при начальной энергии протонов 669 Мэв вычисленные по однопионной обменной модели. — экспериментальные значения поляризации. Кривые 1-4 - результаты расчетов, отвечающих вариантам таблицы 2. (Вариант 1 соответствует зависимости амплитуды f_{S11} от Δ², представленной на рис. 3 в /13/). Было найдено, что во всех случаях, с учетом поправок на разное импульсное разрешение магнитного анализатора, полученные пики имеют приблизительно одинаковое размытие вплоть до верхней границы непрерывного спектра вторичных протонов от реакций I и II. Это дало возможность экстраполировать хвосты пиков, соответствующих упругому **р** р-рассеянию, в области, занятые непрерывными спектрами вторичных протонов, и оценить величину примеси упруго рассеянных протонов в этих областях, которая оказалась равной $3\pm 3\%$ ($\theta_1 = 8, 3^\circ$), $10\pm 3\%$ ($\theta_1 = 14, 5^\circ$) и $20\pm 5\%$ ($\theta_1 = 18, 0^\circ$). Предполагалось, что торможение и многократное рассеяние в стенках коллиматоров протонов не сопровождается их деполяризацией.

Степень поляризации протонов, прошедших через спектрометр. определялась по асимметрии их рассеяния в искровой камере длиной 83 см и сечением 36 х 36 см², содержавшей 21 графитовую пластину. каждая толщиной 0.6 см. Камера имела 32 разрядных промежутка, каждый шириной 1 см, и была наполнена до давления 1.1 атмосферы неоном с 0,5% примесью аргона. Фотографирование на один кадр киноленты двух ортогональных проекций актов рассеяния протонов в графитовых пластинах производилось с помощью линз и зеркал автоматической фотокамерой РФК-5. Импульс. выработанный электронной схемой, выделявшей совпадение счетчиков С1, С2, С3 - антисовпадение счетчика С, запускал генератор высоковольтных импульсов, коммутирующими элементами в схеме которого являлись вакуумные искровые разрядники типа ВИР-14, а также фильмопротяжное устройство фотокамеры. Полное время задержки высоковольтного импульса амплитудой 8 кв с длительностью переднего фронта около 25 нсек относительно момента прохождения частицы через камеру не превышало 200 нсек. Расстояние между искровой камерой и счетчиком С, и размеры последнего выбирались так, чтобы была исключена возмож-

ность регистрации протонов, прошедших камеру без рассеяния или испытавших в ней рассеяние на углы, меньше 2⁰. Схема управления работой искровой камеры позволяла осуществлять набор фотоснимков со скоростью до 10 сек⁻¹ при интенсивности вторичного пучка на выходе магнитного анализатора до 10⁴ протонов/сек.

Для определения характеристик искровой камеры как анализатора поляризации были выполнены два калибровочных эксперимента.

В первом калибровочном эксперименте наблюдалось рассеяние в искровой камере протонов с энергией ~ 370 Мэв из неполяризованного пучка. При этом измерялась величина ложной асимметрии, которая могла быть обусловлена возможными неточностями юстировки счетчика антисовпадений С₄, иска жениями оптической системы, при помощи которой производилось фотографирование актов рассеяния в двух ортогональных плоскостях, погрешностями, вносимыми при обмере снимков на измерительных приборах, и другими плохо учитываемыми факторами.

Во втором калибровочном эксперименте была измерена анализирующая способность камеры посредством наблюдения в ней асимметрии в рассеянии протонов из пучка с известной степенью поляризации. Использовался пучок вторичных протонов от упругого РР -рассеяния на угол 15⁰ при энергии 669 Мэв. Степень поляризации этого пучка, согласно нашим прежним результатам^{/11/}, составляла 0,545<u>+0</u>,022. Перед вхождением этого пучка в камеру энергия протонов в нем уменьшалась до ≈ 370 Мэв посредством торможения их в полиэтиленовых фильтрах.

Результаты измерений ложной асимметрии и анализирующей способности искровой камеры приведены в нашей предыдущей публикации /12/

Обработка снимков с искровой камеры

Всего было получено $\approx 270\,000$ снимков в трех исследуемых пучках вторичных протонов от рр -соударений, $\approx 200\,000$ - в неполяризованном пучке и $\approx 250\,000$ - в пучке протонов с известной степенью поляризации. Было отобрано соответственно 26 200, 19500 и 24600 снимков со случаями рассеяния, удовлетворяющими следующим основным критериям: а) рассеяние должно быть однократным на угол $5^{\circ} \leq \theta_2 \leq 23^{\circ}$; б) только один след должен выходить из графитовой пластины, в которой произошло рассеяние; в) рассеянная частица не должна останавливаться в камере.

Промер актов рассеяния производился на полуавтоматических приборах типа ПУОС, обработка результатов измерений – на вычислительной машине "Минск-22". Область углов $5^{\circ} \leq \theta_2 \leq 23^{\circ}$ разбивалась на шесть равных интервалов, для каждого из которых методом максимума правдоподобия определялись значения ложной асимметрии $\epsilon'(\theta_2)$ и анализирующей способности камеры A (θ_2) и затем находились соответствующие значения поляризации P₈ пучка вторичных протонов от **рр** -соударений. Функция правдоподобия записывалась в виде

$$\ell = \prod \left[1 + \epsilon \left(\theta_2 \right) \cos \phi_i \right] , \qquad (3)$$

где ϕ_1 – азимутальный угол і -го случая рассеяния, отсчитываемый от фиксируемой в данных экспериментах плоскости, содержащей вектор импульса первичного протона \vec{p} и вектор импульса регистрируемого вторичного протона \vec{q} . Асимметрия рассеяния $\epsilon(\theta_2)$ во всех случаях представлялась в виде

$$\epsilon (\theta_2) = P_S \Lambda (\theta_2) + \epsilon' (\theta_2) . \qquad (4)$$

Посредством вычисления средневзвешенных по интервалу $5^{\circ} \le \theta_2 \le 23^{\circ}$ величин были найдены значения поляризации \vec{P}_s в направ - лении ортогональных векторов $\vec{p} \times \vec{q}$ и ($\vec{p} \times \vec{q}$) $\times \vec{q}$.

Поляризация вторичных протонов от реакций І и ІІ равна

$$P(\theta_1) = \frac{\overline{P_s}(\theta_1) - \delta P_0(\theta_1)}{1 - \delta}, \qquad (5)$$

где δ - величина примеси вторичных протонов от уг угого РР -рассеяния в анализируемом пучке, Р $_0(\theta_2)$ - их поляризация.

Полученные таким образом значения $\overline{P}_{s}(\theta_{1})$ и $P(\theta_{1})$ вместе с взятыми из работы^{/11/} значениями $P_{0}(\theta_{1})$ приведены в таблице 1. За положительное направление поляризации принималось направление вектора $\vec{p} \times \vec{q}$. Видно, что поляризация вторичных протонов в реакциях I и II совпадает по знаку с поляризацией протонов в упругом pp -рассеянии.

Таблица 1

Экспериментальные значения поляризации пучков вторичных протонов от РР -соударений при 669 Мэв

Угол θ ₁ испускания, в градусах	Поляризация Р _в вдоль вектора р × q	Поляризация Р _в вдоль вектора (р́×q́)×q́	Поляризация Р _о в упругом рр -рассеянии на угол θ, при 669 Мэв/11/	Поляризация Р вдоль век- тора р × ф вторичных протонов в реакциях I и II
8,3 <u>+</u> 0,2	0,21 <u>+</u> 0,04	-0,04 <u>+</u> 0,05	0,42 <u>+</u> 0,01	0 ,20<u>+</u>0, 05
14,5 <u>+</u> 0,3	0,24 <u>+</u> 0,04	0,00 <u>+</u> 0,04	0,54 <u>+</u> 0,02	0,21 <u>+</u> 0,05
18,0 <u>+</u> 0,3	0,23 <u>+</u> 0,03	-0,02 <u>+</u> 0,04	0,55 <u>+</u> 0,02	0,15 <u>+</u> 0,05

Обсуждение результатов

В однопионной обменной модели одиночного образования π -мезонов поляризация вторичных нуклонов, так же как и дифференциальные сечения соответствующих процессов, выражаются через амплитуды виртуального π N -рассеяния $f_{L_{2I_{2J}}}(U, \Delta^2)$, где U - квадрат полной энергии π N -системы, Δ^2 - квадрат 4-импульса виртуального π -мезона. Селлери^{/13/} показал, что амплитуда резонансного I = J = 3/2 состояния fp зз (U, Δ^2) вне массовой поверхности связана с известной экспериментально амплитудой того же резонансного состояния на массовой поверхности соотношением

$$f_{P_{33}}(U, \Delta^2) = \frac{f_{33}^{(B)}(U, \Delta^2)}{f_{33}^{(B)}(U, -\mu^2)} f_{P_{33}}(U, -\mu^2),$$

где $f_{33}^{(B)}(U, \Delta^2)$ и $f_{33}^{(B)}(U, -\mu^2)$ - соответствующие борновские амплитуды виртуального и реального πN -рассеяния. Согласно приведенным в ^{/13/} численным расчетам и нерезонансные амплитуды виртуального π N -рассеяния, кроме амплитуды $f_{811}(U, \Delta^2)$, зависят от Δ^2 приблизительно таким же образом. Что же касается амплитуды $f_{811}(U, \Delta^2)$, то приведенная в ^{/13/} на рисунке 3 зависимость этой амплитуды от Δ^2 может быть апроксимирована выражением

$$f_{S1}(U, \Delta^{2}) = \frac{f_{33}^{(B)}(U, \Delta^{2})}{f_{33}^{(B)}(U, -\mu^{2})} \frac{1 - \frac{\Delta^{2} + \mu^{2}}{\Delta_{0}^{2} + \mu^{2}}}{1 + \frac{\Delta^{2} + \mu^{2}}{\gamma \mu^{2}}} f_{S1}(U, -\mu^{2})$$

в котором параметры Δ²₀ и γ равны: Δ²₀ = 2,5 μ² и γ = 10. В ^{/13/} указывается также, что все амплитуды вне массовой поверхности в первом приближении имеют зависимость от U такую же, как и на массовой поверхности. Так как в условиях рассматриваемых экспериментов кинетическая энергия *п* -мезона в системе центра масс *п* -мезона и одного из вторичных нуклонов не превышала ≈ 145 Мэв, можно было в разложении по парциальным волнам ограничиться учетом только S - и P -состояний.

Вклад пионного обмена при больших передачах импульса корректировался функцией F (Δ^2), которой придается смысл пионного формфактора нуклона. Согласно работе^{/14/}, для этой функции использовалось выражение:

$$F(\Delta^2) = \frac{9 \mu^2}{\Delta^2 + 10 \mu^2} .$$

Величины поляризации вторичных протонов в реакциях I и II в приближении модели однопионного обмена были найдены путем численного интегрирования выражения (21) работы $^{/10/}$ для значений параметров Δ_0^2/μ^2 , γ и формфактора F (Δ^2), приведенных в таблице 2. Поляризация вторичных протонов, отвечающая вкладу обеих реакций, находилась по формуле:

$$P(\theta_{1}) = \frac{\left(\frac{d\sigma(\theta_{1})}{d\omega}\right)_{I}P_{I}(\theta_{1}) + \left(\frac{d\sigma(\theta_{1})}{d\omega}\right)_{II}P_{II}(\theta_{1})}{\left(\frac{d\sigma(\theta_{1})}{d\omega}\right)_{I} + \left(\frac{d\sigma(\theta_{1})}{d\omega}\right)_{II}}$$

На рис. 4 приведены кривые, представляющие угловые зависимости поляризации Р (θ_1) для указанных в таблице 2 четырех вариантов набора параметров F (Δ^2), Δ_0^2/μ^2 и γ .

Таблица 2

Вар	иант	расчета	$F(\Delta^2)$	Δ_0^2 / μ^2	γ
	1	·	9	2,5	10
	2		$\Delta^2 / \mu^2 + 10$	1,0	20
`	3		· _"-	00	∞
	4		1	2,5	10

Значения параметров, отвечающие разным вариантам расчета

Из рисунка видно, что наилучшее согласие экспериментальных и расчетных значений поляризации вторичных протонов может быть получено только при учете формфактора нуклона и корректировки зависимости $f_{S 11}$ -амплитуды виртуального πN -рассеяния от Δ^2 (варианты 1 и 2 расчета). Хотя некоторое предпочтение может быть и отдано кривой 2, однако достигнутая экспериментальная точность не позволяет сделать определенный выбор между этими двумя вариантами. Расчеты без учета формфактора (вариант 4) и без корректировки $f_{S 11}$ -амплитуды (вариант 3) не согласуются с наблюдаемой угловой зависимостью поляризации.

Следует также отметить, что предсказываемая моделью однопионного обмена угловая зависимость поляризации вторичных протонов в реакции II особенно чувствительна к выбору зависимости f_{S11} -амплитуды от Δ^2 . Поэтому более детальное экспериментальное исследование поляризации протонов в этой реакции поможет уточнить поведение амплитуды S_{11} -состояния π N -системы вне массовой поверхности.

Литература

- 1. N. Hoshizaki and S. Machida. Progr. Theoret. Phys., 29, 49(1963).
- Р.Я. Зулькарнеев, И.Н. Силин. ЖЭТФ, <u>45</u>, 664 (1963);
 Phys. Letters, 3, 265 (1963).

3. И.Быстрицкий, Р.Я.Зулькарнеев. ЖЭТФ, <u>45</u>, 1169 (1963).

- Л.С. Ажгирей, Н.П. Клепиков, Ю.П. Кумекин, М.Г. Мешеряков, С.Б. Нурушев, Г.Д. Столетов. ЖЭТФ, <u>45</u>, 1174 (1963); Phys.Letters, <u>6</u>, 196 (1963).
- 5. E. Ferrari, F. Selleri, Nuovo Cimento, 27, 1450 (1963).
- 6. W. Busza, D.G. Davis, B.G. Duff, R.E. Jennings, F.F. Heymann,

D.T. Walton, E.H. Bellamy, T.F. Buckley, P.V. March, A. Stefanini, J.A. Strong. Nuovo Cimento, <u>42A</u>, 871 (1966).

- 7. С.Б. Нурушев, В.Л. Соловьянов. Препринт ОИЯИ Р-2382, Дубна, 1965.
- 8. S. Mandelstam, Proc. Roy.Soc., A244, 491 (1958).
- 9. В.Г. Вовченко, Н.И. Констанашвили, В.А. Ярба. ЯФ, 11, 810 (1970).
- 10. Л.С.Ажгирей, В.И. Чижиков. Сообщение ОИЯИ Р2-4937, Дубна, 1970.
- Л.С. Ажгирей, Ю.П. Кумекин, М.Г. Мешеряков, С.Б. Нурушев, В.Л. Соловьянов, Г.Д. Столетов. ЯФ, <u>2</u>, 892 (1965).
- Л.С. Ажгирей, И.К. Взоров, В.Н. Жмыров, А.С. Кузнецов, М.Г. Мешеряков, Г.Д. Столетов, А.Ф. Филозов. Препринт ОИЯИ 1-3920, Дубна, 1968.
- 13. F. Selleri, Nuovo Cimento, 40A, 236 (1965).
- U. Amaldi, jr., R. Biancastelli, S. Francaviglia. Nuovo Cimento, 47A, 85 (1967).

Рукопись поступила в издательский отдел 29 июля 1970 г.