Q. \$, 1970, 7. 12, bun. 5, c. 982-985. 22/1-70 5-648 объединенный институт ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна. **P1** - 5059

В.К. Бирулев, А.С. Вовенко, Б.Н. Гуськов, Т. Добровольский, В.Г. Кривохижин, В.В. Кухтин, И. Липтак, М.Ф. Лихачев, А.Л. Любимов, П. Маг, С.В. Русаков, И.А. Савин, В.Е. Симонов

ПОИСК ИЗОБАРЫ С ИЗОТОПИЧЕСКИМ СПИНОМ T = 5/2 В РЕАКЦИИ $\pi^+ + p \rightarrow \pi^- + X^{+++}$

1970

BM(OKMX)HEPFHH

RAGORATOPHS

В.К. Бирулев, А.С. Вовенко, Б.Н. Гуськов, Т. Добровольский, В.Г. Кривохижин, В.В. Кухтин, И. Липтак, М.Ф. Лихачев, А.Л. Любимов, П. Маг, С.В. Русаков, И.А. Савин, В.Е. Симонов

8351/2 NG

ПОИСК ИЗОБАРЫ С ИЗОТОПИЧЕСКИМ СПИНОМ T = 5/2 В РЕАКЦИИ $\pi^+ + p \rightarrow \pi^- + X^{+++}$

Направлено в ЯФ

P1 - 5059

Обнаружение изобары с изотопическим спином T = 5/2 имело бы весьма существенное значение вообще и особенно в связи с различными схемами симметрии и моделью кварков. В схемах симметрии частицы с T = 5/2 должны образовывать новые, экзотические супермультиплеты, а в модели кварков они не могут быть построены из трех кварков и должны включать по меньшей мере 4 кварка и 1 антикварк/1-4/.

Поиски изобары с T = 5/2 производились в основном с помощью пузырьковых камер по анализу эффективных масс системы $p \pi^+ \pi^+$ или аналогичных ей, образуемых в πp , πd , pp, $n \overline{p}$ и γp -взаимодействиях. Однако все попытки обнаружить изобару не дали достоверных указаний на ее существование (последний обзор по этому вопросу см. в/5/). Для поиска изобары с T = 5/2 может быть использован также метод

спектрометрии недостающих масс, в частности, измерение спектра импульсов π⁻-мезонов, образованных π⁺-мезонами на протонах. Действительно, в процессе

 $\pi^+ + p \to \pi^- + X^{+++},$ (1)

где через χ^{+++} обозначена совокупность остальных частиц, которая, очевидно, имеет тройной электрический заряд, барионное число $B_{=1}$ и странность $S_{=0}$, рождение трижды заряженной изобары должно было бы вызвать появление максимума в спектре π^- -мезонов, вылетающих под определенным углом.

3

Анализ данных, полученных с помощью пузырьковых камер (см., например,/7/), показывает, что для π⁻ -мезонов с импульсом ≥2Гэв/с основным каналом процесса (1) является реакция

(2)

 π^+ + p \rightarrow π^- + p + π^+ + π^+

с малой примесью других реакций, прежде всего $\pi^{+} + p \rightarrow \pi^{-} + p + \pi^{+} + \pi^{+} + \pi^{0}$.

При изучении спектра *п* -мезонов в этих реакциях следует принимать во внимание, что появление максимума может быть объяснено кинематическим эффектом/8/ от реакции

Появление этого эффекта в работе $^{/9/}$ объясняет наблюдавшийся максимум в области 1,6 Гэв/с² в слектре эффективных масс системы р $\pi^+ \pi^+$.

Измерение спектра π^- -мезонов в процессе (1) проводилось ранее/6/ при импульсе первичных π^+ -мезонов 1,84 Гэв/с и углах вылета π^+ -мезонов 18 + 30° л.с.к. Особенность в спектре, наблюдавшаяся в этой работе и соответствующая эффективной массе X^{+++} 1,5 + 1,7 Гэв/с2, может быть также объяснена кинематическим эффектом реакции (3).

Нами измерялся спектр импульсов π^- -мезонов в реакции (1) при импульсе π^+ -мезонов 3,88 Гэв/с и угле вылета π^- -мезонов 1,9° л.с.к.

Измерения проводились на синхрофазотроне Объединенного института ядерных исследований. В эксперименте в основном использовалась аппаратура, применявшаяся ранее для исследования упругого $\pi^+ p$ -рассеяния назад/10/. Схема канала и экспериментальной установки приведена на рис. 1.

Пучок положительных частиц со средним импульсом Р = (3888±21)Мэв/с, разбросом по импульсу ±0,5% и разбросом по углу ±20' падал на жидководородную мишень длиной 50 см. π⁺ -мезоны, доля которых составляла ≈ 0,36 полной интенсивности пучка, выделялись дифференциальным га-

4

cл

Рис. 1. Схема расположения аппаратуры на пучке положительно заряженных частиц. МЛ-14 и МЛ-15 - квадрупольные магнитные линзы; СП-94 - отклоняющие магниты; СП-40 и СП-12 - магниты спектрометра; S₁-S₆ - сцинтилляционные счётчики; SK - сцинтилляционный счётчик с отверстием; 1ДС2 - дифференциальный газовый черенковский счётчик; 1С1 пороговый газовый черенковский счётчик; ИК-1 - искровая камера; II₂ - жидководородная мишень; Э.А. - электронная аппаратура, размещенная в бетонном домике.

зовым черенковским счётчиком 1 D C 2 и сцинтилляционными счётчиками S и S . Частицы пучка, которые не провзаимодействовали в водородной мишени, попадали в счётчик SK , включенный на антисовпадения. π -мезоны от процесса (1), вылетавшие под углом 1,9 + 0,5[°] к направлению падающих π^+ -мезонов, проходили через отверстие счётчика SK, пороговый газовый черенковский счётчик 1С1 . сцинтилляционный счётчик S₃ и попадали в магнитный спектрометр из двух сильнофокусирующих магнитов/11/ . Дисперсия спектрометра составляла ≈ 1.6 см на 1% изменения импульса. Разрешение спектрометра +1%. Спектрометр калибровался методом токонесущей нити, а также по π^+ -мезонам, упруго рассеянным в водородной мишени на угол 4,7° в л.с.к. и направденным в спектрометр с помощью вспомогательного магнита СП-94. При этом импульс пионов измерялся счётчиком 1С1. Эффективный телесный угол спектрометра. рассчитанный методом Монте-Карло, равен (0,35+0,04) мстерад. Вблизи области изображения этим спектрометром водородной мишени располагались сцинтилляционные счётчики S_4 , S_5 и S_6 и проволочная искровая камера ИК с четырьмя промежутками по 2 см и площадью 60 х 40 см2. Съем информации с ИК фотографический. Искровая камера запускалась совпадениями

 $S_1 + 1DC2 + S_2 - SK + 1C1 + S_3 + S_4 + S_5 + S_6$.

По горизонтальной координате трека в ИК определялся импульс *ж* -мезона, а именно

 $\mathbf{P} = \mathbf{P}_0 \exp \{ a \mathbf{x} \} + \Delta \mathbf{P},$

где P - импульс π -мезона, P₀ - импульс, на который настроен спектрометр, х - координата трека в ИК, ΔP - поправка, учитывающая потери импульса π - мезона в веществе от центра водородной мишени до середины спектрометра, равная в нашем эксперименте ≈ 16 Мэв/с, а = = (0,01443 ± 0,00052) 1/см - константа, определенная экспериментально.

Экспозиции как с водородом, так и с пустой мишенью проводились при трех различных значениях магнитного поля в спектрометре, соответствующих трем значениям P_0 , что позволило измерить недостающие массы X^{+++} от 1,2 Гэв/с² (минимальная масса для системы $p\pi^+\pi^+$) до 2,2 Гэв/с². Во время экспозиций через установку было пропущено около 0,82 · 10⁹ π⁺ -мезонов. При этом было получено 2802 снимка ИК. Из них было отобрано 2761 событие, каждое из которых удовлетворяло следующим требованиям:

a) на снимке имеется только один трек, наблюдавшийся не менее чем в трех промежутках искровой камеры;

б) продолжение трека попадает в апертуру магнитного спектрометра.

По этим событиям были построены распределения по импульсам π^- -мезонов и по недостающей массе X⁺⁺⁺ при каждом значении поля в магнитном спектрометре. Из этих распределений путем использования перекрывающихся интервалов была найдена относительная эффективность регистрации π^- -мезонов установкой в зависимости от горизонтальной координаты частицы в ИК. После этого были объединены экспериментальные данные, полученные в разных экспозициях. По объединенным данным вычислялись дифференциальные сечения рождения π^- -мезонов по формуле:

 $\frac{\mathrm{d}^2\sigma}{\mathrm{d}\,\mathfrak{Q}\,\mathrm{d}\,\mathrm{P}} = \mathrm{K} \cdot \frac{\Delta\,\mathrm{N}}{\mathrm{M}\Delta\,\mathrm{P}} \cdot \frac{1}{\Delta\,\Omega} \cdot \frac{1}{\mathrm{x}},$

где ΔN/M – число π⁻ -мезонов в интервале импульсов ΔP , отнесенное к числу ^M падающих π⁺ -мезонов; ΔΩ – телесный угол спектрометра; х -число протонов в мишени на см²; K = 1,62 ± 0,28 – поправочный коэффициент, учитывающий выбывание π⁻ -мезонов до ИК, распад π⁻ -мезонов, примесь μ⁻ -мезонов в пучке, эффективности счётчиков и искровой камеры. Неточности величин коэффициента К и телесного угла спектрометра определяют возможную систематическую ошибку калибровки.

На рис. 2 приведен полученный дифференциальный спектр импульсое π⁻ -мезонов, разбитый на интервалы по 25 Мэв/с для измерений с водородом. Приведены также результаты измерений с пустой мишенью. На рисунке показаны только статистические ошибки. Видно, что в измеренном спектре импульсов π⁻ -мезонов имеется максимум вблизи 3 Гэв/с, что соответствует недостающей массе Х⁺⁺⁺ ≈ 1,6 Гэв/с² (верхняя шкала).

1.

Рис. 2. Спектр π^- -мезонов. **6** - измерения с водородом; - - измерения с пустой мишенью. Сплошная кривая - расчёт для реакции (3) плюс постоянная величина, обозначенная пунктиром. Для выяснения природы этого максимума в условиях нашего эксперимента были рассчитаны спектры импульсов π^- -мезонов от реакции (3). При расчётах учитывались:

а) экспериментальные данные об угловом распределении ρ^0 -мезонов в реакции (3) в виде $\frac{d\sigma}{dt} = A \exp B(t)$, где величина параметра В варьировалась от 5 до 15/12/, а параметр А определялся из условия наилучшего согласия с нашими экспериментальными данными;

 б) экспериментальные значения собственных ширин изобары и *р* -мезона с распределениями как по Брайт-Вигнеру, так и по Гауссу;

в) экспериментальные угловые распределения π^- -мезонов от распада ρ^0 -мезона, полученные при 2,27 Гэв/с/13/ и 4 Гэв/с/7/.w₁(θ)= = 0,0114 · (2-10 cos θ +15 · cos² θ) и w₂(θ) = 0,54(0,05-0,1 cos θ +0,28cos² θ)соответственно, а также выбранные произвольно для проверки устойчивости результата распределения в виде

 $w_3(\theta) = \cos^4 \theta$, $w_4(\theta) = 1$ $H = w_5(\theta) = \sin^4 \theta$,

где θ – угол вылета π^- –мезона в системе покоя ρ^0 –мезона, отсчитанный от направления первичного π^+ – мезона.

Расчёты показали, что для малого угла вылета π^- -мезонов в л.с., взятого в нашем эксперименте, форма их спектра и в особенности положение максимума мало чувствительны как к изменению величины В , так и к выбору функции w_i (θ). Например, положение максимума смещалось на 0,02 Гэв/с при изменении З от 5 до 15 и менее, чем на 0,01Гэв/с для разных w (θ).

w₅(θ) дает заметное различие в форме спектра, однако, эта угловая зависимость существенно противоречит экспериментальным данным/7/.

На рис. 2 для сравнения с экспериментом представлен один из вычисленных таким образом спектров, полученный для B = 10 и $w_2(\theta)$, к которому добавлена постоянная составляющая. Этот спектр нанесен на рисунке сплошной линией. Пунктирная линия показывает уровень взятого постоянного фона.

Качество согласия вычисленного спектра с экспериментальными данными характеризуется величиной χ^2 равной 71,8 при 63 степенях свободы.

9

· · .

Вычисленный спектр соответствует полному сечению реакции (3) ≈0,5 мб, что не противоречит имеющимся экспериментальным данным/14/.

Таким образом, измеренный спектр π^- -мезонов от процесса (1) может быть описан в пределах достигнутой точности измерений суммой постоянного фона и вклада от реакции (3). Это означает, что в пределах ошибок образование изобары с изотопическим спином T = 5/2 и массой в интервале 1,2 + 2,2 Гэв/с² в реакции (1) не обнаружено.

Можно отметить, что вблизи масс 1,5 + 1,7 Гэв/с² на рис. 2 видно некоторое отклонение экспериментальных точек от плавной кривой для процесса (3), которое, однако, не является статистически обеспеченным.

При обнаружении отклонения экспериментального спектра от кривой, соответствующей спектру π^{-} -мезонов от реакции (3), необходимо было бы учитывать вклад от других квазидвухчастичных реакций типа (3).

Способом, подобным описанному выше, были рассчитаны спектры *п*⁻ -мезонов от квазидвухчастичных реакций:

 $\pi^{+} + p \rightarrow \begin{cases} \Delta (1,94) + \rho^{0} \\ \Delta (1,64) + \rho^{0} \\ \Delta (1,24) + f^{0} \end{cases}$

с последующим распадом ρ^0 и f 0 на $\pi^+\pi^-$. Положения максимумов этих спектров обозначены на рис. 2 стрелками.

В заключение авторы выражают благодарность И.Н. Какурину, Н.И. Чернышову за большую техническую помощь при подготовке и проведении эксперимента, Ж. Маг за просмотр снимков с искровой камеры, А.К. Куликову за обеспечение работы жидководородной мишени, В.А. Владимирову за ценную помощь в работе. Авторы благодарны также К.А. Тер-Мартиросяну и Н.Н. Мейману за обсуждение вопросов, связанных с расчётами спектров, В.А. Колкунову, Е.С. Николаевскому, В.Н. Мельникову и И.Н. Бородиной за проведение расчётов спектров.

10

- Литература
- 1. H.Harari, H.J.Lipkin. Phys. Rev. Lett. 13, 345 (1964).
- 2. Я.Б. Зельдович. Письма ЖЭТФ, II, вып. 7, 340 (1965).
- 3. Я.Б. Зельдович, А.Д. Сахаров. Ядерная физика, 4, вып. 2, 395 (1966).
- 4. H.Harari, D.Horn. M.Kugler, H.J.Lipkin, S.Meshkov, Phys. Rev. 140, 431B (1965).
- 5, Richard J. Plano. 'The Lund Intern. Conf. on Elementary Particles (June 25–July 1, 1969).
 - 6. M.Banner, J.F.Detoeuf et al. Phys. Lett. 21, 582 (1966).
 - 7. M.Aderhobz et al. Phys. Rev. 138 B897 (1965).
 - 8. G. Goldhaber. UCKL-17388 (1967).
- 9. G. Goldhaber, S. Goldhaber et al. Proc. of the Intern.Conf. of High Energy. Phys., Dubna (1964), p. 480.
- T. Dobrowolski, B.N. Guskov, M.F. Likhachev, A.L. Lubimov, Yu.A. Matulenko, V.S. Stavinsky, A.S. Vovenko. Phys.Lett., <u>24B</u>, 203 (1967).
- 11. А.С. Вовенко, М.Ф. Лихачев, Ю.А. Матуленко, И.А. Савин, В.С. Ставинский, Сюй Юн-чан. ПТЭ 2, 26 (1968).
- 12. Н. Ангелов, И.М. Граменицкий и др. Сообщение ОИЯИ Р1-4657, Дубна (1969).
- 13. S.S. Yamomoto et al. Phys.Rev., 140, B730 (1965). 14. M. Walter. PHE 69–1, Berlin–Zeuthen (1969).

Рукопись поступила в издательский отдел 22 апреля 1970 года.