5-903

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

XI GIGGT

Repuestions

Дубна

Ю.А.Будагов, В.Б.Виноградов, А.Г.Володько, В.П.Джелепов, Г.Мартинска, В.С.Кладницкий, Ю.Ф.Ломакин, И.Паточка, В.Б.Флягин, П.В.Шляпников x 69

P1 - 4610

ИЗМЕРЕНИЕ

ПОЛНОГО И ПАРЦИАЛЬНЫХ СЕЧЕНИЙ ВЗАИМОДЕЙСТВИЯ П -- МЕЗОНОВ С ИМПУЛЬСОМ 5,1 ГЭВ/С В ПРОПАНОВОЙ ПУЗЫРЬКОВОЙ КАМЕРЕ

P1 - 4610

Ю.А.Будагов, В.Б.Виноградов, А.Г.Володько,
В.П.Джелепов, Г.Мартинска, В.С.Кладницкий,
Ю.Ф.Ломакин, И.Паточка*, В.Б.Флягин,
П.В.Шляпников

7965/2 up

ИЗМЕРЕНИЕ

полного и парциальных сечений взаимодействия П⁻-мезонов с импульсом 5,1 Гэв/С в пропановой пузырьковой камере

Направлено в ЯФ

OUTOHERCENER HECTRY CHOMINE ECCHE DOBRHHE **BMBNNOTEHA**

Университет им. П.Й. Шафарика, Кошице, ЧССР.

Настоящая работа является частью исследования с помощью метровой пропановой пузырьковой камеры /1/вождающихся образованием многих нейтральных частиц в конечном состоянии.

Ниже приведены результаты измерений полного сечения взаимодействия π^- -мезонов с импульсом 5,1 Гэв/с ^{/2/} в пропане, а также сечений реакций с различной множественностью заряженных частиц (от 0 до 10) в столкновениях пионов с протонами.

Полное сечение взаимодействия *т*-мезонов в пропане определялось как /3/

$$\sigma_{n} = \frac{N_{b}}{\left[\left(N_{T} \times \epsilon_{\mu} - N_{b}\right) \times \ell_{k} + \sum_{i=1}^{N_{b}} \ell_{i}\right]} \times \frac{44}{N_{A} \times \rho}, \qquad (1)$$

где N_{T} – число первичных треков; N_{A} = 6,025 x10²³ – число Авогадро; $\rho = 0,43$ г/см³ – плотность пропана ^{/3/}; $\ell_{k} = 80$ см – эффективный размер камеры; ℓ_{1} – длина і –го первичного трека до взаимодействия (I $\leq i \leq N_{b}$) ; ϵ_{μ} – поправка на примесь μ – и е в пучке; $N_{b} = N_{b}^{0} / \epsilon_{n} \times \epsilon_{\theta}$ – число взаимодействий, найденных при просмотре; ϵ_{Π} – эффективность просмотра; ϵ_{θ} – поправка на неучтенные в просмотре случаи рассеяния π^{-} –мезонов на малые углы.

В результате просмотра каждого 50-го снимка из полного числа $N_c = 230000$ снимков было найдено: $N_{\tau} = 24828$, $N_b^0 = 6653$ и $\sum_{i=1}^{N_b} \ell_i$ =

= (2304+1) м ^{X/}. Среднее число треков и среднее число взаимодействий на снимок соответственно равны: $N_{T} = 5,92 \pm 0,04$ и $N_{b} = 1,9\pm0,1$; эффективность просмотра, определенная по повторному просмотру половины снимков, $\epsilon_{T} = 0,87 \pm 0,05$.

Поправка на примесь μ^- и е⁻ в пучке π^- -мезонов была оценена исходя из геометрии канала и среднего времени жизни π^- и μ^- мезонов с импульсом 5,1 Гэв/с и оказалась равной $\epsilon_{\mu} = 0.90 \pm 0.03$. Эта оценка согласуется с величиной, полученной для аналогичного π^- мезонного канала с импульсом 4 Гэв/с /4/.

Поправка на потери взаимодействий при просмотре из-за рассеяния π^- -мезонов на малый угол в упругом π^- р взаимодействии составляет 0,91 + 0,02 ^{/5/}. Используя эту величину и относительное число одно- и двухлучевых событий (см. табл. 1), получаем $\epsilon \theta = 0.97 + 0.02$.

Подставляя в (1) значения N_b, N_T, $\Sigma \ell_i$, ϵ , ϵ_{μ} и ϵ_{θ} , находим полное сечение взаимодействия π^- -мезонов в пропане $\sigma_n =$ = (952 + 63) мбн. Отсюда средняя длина свободного пробега π^- -мезонов до взаимодействия равна (178 + 12) см.

Полное сечение взаимодействия π^- -мезонов с ядром углерода $\sigma_c = (\sigma_n - 8\sigma_p)/3 = (240 \pm 16)$ мб. Здесь использовано значение полного сечения $\pi^- - p$ взаимодействия при $P_{\pi^-} = 5,1$ Гэв/с $\sigma_p = (29,12 \pm 0,01)$, приведенное в работе $^{/6/}$.

Сечение рождения одного события на свободном протоне в нашем эксперименте составляет $\sigma_0 = \sigma_n / (8 \times N_c \times \tilde{N}_b) = (0.27 \pm 0.02)$ мкб^{×х/}.

Результаты измерений относительной вероятности генерации протонных, нейтронных и углеродных событий xxx/, сечение взаимодействия

^{X/}Измерение длин ℓ_i производилось на просмотровом столе. ^{XX/}Этот результат был использован для определения сечения рождения обнаруженного нами резонанса Y $_0^*$ (1327) $\rightarrow \Lambda + \gamma/8/$.

ххх/События считались протонными (Р), если число вторичных частиц звезды было четным и их суммарный заряд равнялся нулю; нейтронными (N) – при нечетном числе треков звезды и суммарном заряде – 1; углеродными (С) – при суммарном заряде вторичных частиц, отличном от 0 или – 1.

п - мезонов с углеродом, а также сечения рождения 0-,2-,4-,6-,8- и
 10-лучевых событий на протоне представлены в табл. 1,2,3.

Сечения событий на протоне были определены по формуле $\sigma_k = = f_k \cdot m_k \cdot \sigma_p$, где k = 0,2,4, ..., 10 – число заряженных треков звезды, m_k -относительные числа протонных событий с множественностью k, приведенные в табл. 1, f_k – поправка, учитывающая зависимость примеси взаимодействий π – мезонов с протонами ядер углерода от множественности k. Эта поправка была получена из данных работы 77.

В табл. 2 и 3 для сравнения приведены сечения, найденные при других энергиях *т*-мезонов. Из этих таблиц видно, что результаты данной работы как по полному сечению взаимодействия *т*-мезонов с ядром углерода, так и по парциальному *т* р сечению хорошо согласуются с общей зависимостью сечений от энергии *т*-мезонов. При этом полное *т* С сечение и парциальные сечения *т* р событий с малой множественностью заряженных частиц (0- и 2-лучевые) систематически уменьшаются в интервале энергий 3-15 Гэв, а парциальные сечения событий с высокой множественностью (6-10 лучей) обнаруживают значительный рост в этом интервале энергий.

В заключение мы благодарим группу лаборантов за выполнение просмотра фотографий.

Литература

 А.В. Богомолов, Ю.А. Будагов, А.Т. Василенко, В.П. Джелепов, Н.И. Дьяков, В.Г. Иванов, В.С. Кладницкий, В.И. Лепилов, Ю.Ф. Ломакин, В.И. Москалев, В.Б. Флягин, ТИ. Шетет, П.В. Шляпников. ПТЭ, <u>1</u>, 61 (1964).

- 2. В.С. Кладницкий, В.Б. Флягин. Препринт ОИЯИ, 1501, Дубна. 1964.
- 3. High Energy and Nuclear Physics Data Handbook, publ. by the Nation. Institute for Research in Nucl. Science, Rutherford High Energy Lab., Chilton, 1963.
- 4. Ким Хи Ин, А.А. Кузнецов, В.В. Миллер. Препринт ОИЯИ, 2092, Дубна, 1965; В.Г. Гришин, Э.П. Кистенев, Му Цзюнь. ЯФ.2,886(1965).
- 5. O.I.Dahl, L.M.Hardy, R.I.Hess, J.Kirz, D.H.Miller. Phys. Rev., <u>163</u>, 1377 (1967).
- 6. A.Citron, W.Galbraith, T.F.Kycia, B.A.Leontic, R.H.Phillips, A.Rousset and P.H.Sharp. Phys. Rev., <u>144</u>, 1101 (1966).
- 7. Б.П. Банник, А.А. Кузнецов, Н.Н. Мельникова, Б. Чадраа. Препринт ОИЯИ, 1-3096, Дубна, 1966.
- N.P.Bogachev, Yu.A.Budagov, V.B.Vinogradov, A.G.Volodko,
 V.P.Dzhelepov, V.G.Ivanov, V.S.Kladnitsky, S.C.Klimenko,
 Yu.F.Lomakin, G.Martinska, Yu.P.Merekov, J.Patocka, V.B.Flyagin and P.V.Shlyapnikov.

Preprint E1-4252, Dubna, 1969.

- 9. M.J.Longo, B.J.Moyer. Phys. Rev.Lett., 9, 466 (1962).
- Б.П. Банник, А.М. Гальпер, В.Г. Гришин, Л.П. Котенко, Л.А. Кузин, Е.П. Кузнецов, Г.И. Мерзон, М.И. Подгорецкий, Л.В. Сильвестров. ЖЭТФ, <u>41.</u> 1394 (1961).
- 11. Н.М. Кочарян, Г.С. Саакян, З.А. Кирокоян. ЖЭТФ, <u>35</u>,1335 (1958). 12.M. Feldman, W.Frati, J.Haplern, A.Kanofsky, M.Nussbaum,

S.Richert and P.Yamin. Nuovo Cim., 50A, 89 (1967).

- 13. D.H.Miller, L.Gutay, P.B.Johnson, F.J.Loeffler, R.L.McHukin, R.J.Sprafka and R.B.Willmann. Phys. Rev., 153, 1423 (1967).
- 14. P.R. Klein, R.J.Sahni, 'A.L.Kovacs and G.W.Tautfest, Phys. Rev., 150, 1123 (1966).

- Aachen-Birmingham-Bohn-Hamburg-London (I.C.) -München collaboration. Nuovo Cim., <u>31</u>, 729 (1964).
- 16. Aachen-Birmingham-Bohn-Hamburg-London (I.C.) -München collaboration. Nuovo Cim., <u>31</u>, 485 (1964).
- Н.Г. Биргер, Ван Ган-чан, Ван Цу-дзен, Дин Да-цао, Ю.В. Катышев, Е.Н. Кладницкий, Д.К. Копылова, В.Б. Любимов, Нгуен Дин Ты, А.В. Никитин, М.И. Подгорецкий, Ю.А. Смородин, М.И. Соловьев, З. Трка. ЖЭТФ, <u>41</u>, 1461 (1961).
- P.Fleury, G.Kayas, F.Müller and C.Pelletier. Proceedings 1962 Intern. Conf. on High-Energy Physics at CERN, p.597, Geneve, 1962.
- 19. T. Terbert and H. Taft. Nucvo Cim., 28, 1214 (1963).
- S.J.Goldsack, L.Riddiford, B.Tallini, B.R.Trench, W.W.Neall, J.R.Norbury, I.O.Shillicorn, W.T.Davies, M.Derrick, J.H.Mulvey, D.Radojicic, Nuovo Cim., <u>23</u>, 941 (1962).
- 21. J.W.Elbert, Preprint CERN 68-7, 1968.

Рукопись поступила в издательский отдел 18 июля 1969 года.

Таблица 1

Относительные частоты генерации протонных, нейтронных и углеродных событий с различной множественностью

заряженных частиц (в процентах)

Число	Т	ип события	······
заряж. треков	Р	N	, Č
0	$3_{95} \pm 0_{92}$		a de la companya de la
I		6,0 <u>+</u> 0,3	·I,4 ∻ 0,I
2	25,8 <u>+</u> 0,6		I,3 ÷ 0,I
3		5,8 <u>+</u> 0,3	7,8 ± 0,3
4	17,3 <u>+</u> 0,5		4,8 + 0,3
5		I,3 <u>+</u> 0,I	8,6 ± 0,4
6	3,4 <u>+</u> 0,2		4,3 <u>+</u> 0,3
7		0,20 <u>+</u> 0,06	$3,9 \pm 0,2$
8	0,22 <u>+</u> 0,05		I,7 + 0,2
9			I,2 º 0,I
10	0,0I <u>+</u> 0,0I		0,50 ± 0,08
TT			0,20 <u>+</u> 0,06
T2			$0,03 \pm 0,02$
13			0,0I <u>+</u> 0,0I
, Итого	50,5 <u>+</u> 0,9	I3,4 <u>+</u> 0,4	36,I ± 0,7

Таблица 2

Сечения 7- взаимодействий при различных импульсах

π −-мезонов

	·	· · · · · · · · · · · · · · · · · · ·	
Р _π -, Гэв/с	а, мб	Ссылка	Примечания
3 4 5,1 6.8 15	$294 \pm 10 \\ 281 \pm 10 \\ 240 \pm 16 \\ 224 \pm 7 \\ 208 \pm 97 \\ 208 \pm 120$	9 9 настоящая работа 10 11	Получено усреднением по спектру <i>т</i> -

		веннос	стью заряженны:	К частиц				
		Импульс	"Т-мезонов,	Гэв/с				
Число лучей	2,7	4	5,I настояшая работа	6,8 ^{,/17/}	I0 ^{/18/}	II,4 ^{/19/}	I6 ^{/20/}	25 ^{/21/}
	2,9 <u>+</u> 0,4 ^{/12/}	I,9 ± 0,3 ^{/12/}	2,1 <u>+</u> 0,2	0,7 <u>±</u> 0,3	0,42±0,05	I,3 <u>+</u> 0,4	0,45±0,2	0,19±0,02
থ	22,8 <u>+</u> 0,3 ^{/13/x/}	I0,2±0,3 ^{/14/x/}	I4,9 <u>+</u> I,5	I2,4 <u>+</u> I,2	II.7±0.3	I0.2 <u>+</u> 0,8	8,95±0,9	7,16 <u>4</u> 0,12
4	5,01 <u>±</u> 0,12 ^{/14/x/}	7,44±0,17 ^{/16/x/}	I Ŧ OI	I2 <u>+</u> I	I0,5±0,3	9°9 1 0°8	9,9 <u>±</u> 0,3	8,60 <u>+</u> 0,I4
9			2,0 <u>+</u> 0,2	2,1 <u>+</u> 0,5	3,8±0,2		4,8 <u>+</u> 0,6	5,87±0,11
8			0,13±0,03	0,I±0,I	0 * 53 <u>+</u> 0 * 06	5,0 <u>+</u> 0,5 ^{xx})	2,4±0,3	2,38+0,08
0			IO.01±0.0	-	0,35 <u>+</u> 0,02	•		0,64±0,04

9

ранных частиц; и 10-лучевые вм

^{(/} Без ст ([/] 6**-**, 8-

множес

с различной

Таблица 3 цействий (мб)

Сечени