

Р.Я.Зулькарнеев, В.С.Надеждин, В.И.Сатаров

НОВЫЕ ИЗМЕРЕНИЯ УГЛОВОЙ ЗАВИСИМОСТИ ПАРАМЕТРА ДЕПОЛЯРИЗАЦИИ В **рр - РАССЕЯНИИ НА ЭНЕРГИИ 635 МЭВ**

1969

ALEPHOLX II

RAGING BA

P1 - 4536

Р.Я.Зулькарнеев, В.С.Надеждин, В.И.Сатаров

НОВЫЕ ИЗМЕРЕНИЯ УГЛОВОЙ ЗАВИСИМОСТИ ПАРАМЕТРА ДЕПОЛЯРИЗАЦИИ В **рр** - РАССЕЯНИИ НА ЭНЕРГИИ 635 МЭВ

IN 7/816t

Введение

Результаты анализа рассеяния нуклонов нуклонами при энергиях 600-660 Мэв показывают, что ряд параметров, например D , R , C _{кр} и т.д., нуждается в существенном уточнении или требует исследования в более широком диапазоне углов/1-3/. Речь идет о необходимости новых измерений этих параметров с точностью 0,04-0,07. Это предъявляет повышенные требования к выбору метода измерений и обязывает более тщательно изучить все эффекты, связанные с возникновением ложных асимметрий.

В настоящей работе выполнены измерения параметра D в области углов 28⁰-117⁰ с.ц.м. для pp – рассеяния с энергией 635<u>+9</u> Мэв. Достигнутая точность в несколько раз превышает точности, полученные ранее при измерениях этого параметра^{/4/}, и удовлетворяет требованиям современного анализа pp – рассеяния.

2. Метод измерений

Метод измерений основан на следующем рассмотрении. Хорошо известно^{/5/}, что вектор поляризации < $\vec{\sigma}_{f}$ > дважды рассеянного неполяризованной мишенью пучка нуклонов в общем случае можно разложить по трем направлениям:

В нашем случае измерялись обе асимметрии
$$e_{3\pm}$$
, а коэффициент депо-
ляризации D определялся из выражения

$$D = \frac{e_{3+} (1+P_1P_2) + e_{3-} (1-P_1P_2)}{2 P_1 P_3}.$$
 (4)

Такому способу измерений **D** присуща большая надежность результатов, так как в (4) ложные асимметрии тройного рассеяния входят с противоположными знаками и практически не дают вклада в величину **D**. Это утверждение справедливо, если оба измерения е_{3±} проводятся в одинаковой геометрии.

3. Схема опыта

Схема опыта и расположения аппаратуры в экспериментальном зале приведена на рис. 1. Измерения e_{3+} и e_{3-} велись одновременно. С этой целью использовались две независимые и идентичные экспериментальные установки, расположенные симметрично по обе стороны от оси падающего поляризованного пучка и регистрировавшие протоны, рассеянные водородосодержащей мишенью на углы $\pm \Theta_3$.

Случаи рассеяния на водороде выделялись телескопами, состоящими из счётчиков C₁ C₂C₃ при рассеянии с $\vec{n}_1 \vec{n}_{2} = +1$ и C₆ C₇ C₈ для случая $\vec{n}_1 \vec{n}_2 = -1$, включенными на совпадение с телескопами протонов отдачи из C₄ C₅ и C₉ C₁₀.

Анализ поляризации происходил при рассеянии на ядрах углерода с последующей регистрацией рассеянных протонов телескопами C_1C_2 и C_6C_7 соответственно для $\vec{n_1} \cdot \vec{n_2} = +1$ и -1. В качестве анализаторов поляризации использовались графитовые блоки длиною $\ell = 100$ мм при работе на углах $\Theta_2 < 90^\circ$ и 40 мм на углах $\Theta_2 > 90^\circ$ с.ц.м.Углы анализирующего рассеяния выбирались равными $\Theta_3 = 8^\circ \pm 1,5^\circ$ для $\Theta_2 < 90^\circ$ и $\Theta_3 = 11^\circ \pm 1,5^\circ$ при работе в области $\Theta_2 > 90^\circ$.

$$\langle \vec{\sigma}_{t} \rangle = \frac{1}{1 + P_{1}P_{2}\vec{n}_{1}\vec{n}_{2}} \{ [P_{2} + DP_{1}(\vec{n}_{1}\vec{n}_{2})]\vec{n}_{2} + [AP_{1}(\vec{n}_{1}\vec{k}_{2}) + RP_{1}\vec{n}_{1}[\vec{n}_{2}\vec{k}_{2}]]\vec{s}_{2} +$$
(1)

+ $[A'P, (\vec{n}, \vec{k}) + R'P, [\vec{n}, \vec{k}]\vec{n},]\vec{k}'_{3}$

где ортогональные орты составлены следующим образом из единичных векторов в направлении падающего \vec{k} и рассеянного \vec{k}' импуль-

$$\vec{n}_{2} = \frac{\vec{k}_{2} \times \vec{k}_{2}}{|\vec{k}_{2} \times \vec{k}_{2}|}, \quad \vec{s}_{2} = \vec{n}_{2} \times \vec{k}_{2}, \quad \vec{k}_{2} \quad .$$
(2)

В выражении (1) D, R, R', A и A' – параметры тройного рассеяния Вольфенштейна, P₂ – поляризация, возникающая при рассеянии неполяризованного пучка нуклонов на неполяризованной мишени, P₁ – поляризация пучка в первом рассеянии.

Поскольку пространственная четность сохраняется с достаточно хорошей точностью, то при двукратном рассеянии в параллельных плоскостях вектор поляризации может иметь только нормальную составляющую $\langle \vec{\sigma_t} \rangle_n$. Из (1) видно, что двум взаимно противоположным направлениям вектора \vec{n}_2 . относительно $\vec{n_1}$ отвечают два значения $\langle \vec{\sigma_t} \rangle_n^{\pm}$. Соответственно в опыте по тройному рассеянию на мишени с анализирующей способностью $\vec{P_3}$ возникнут две асимметрии: $e_{3+} = \langle \vec{\sigma_t} \rangle_n^{\pm} \vec{P_3}$ и $e_{3-} = \langle \vec{\sigma_t} \rangle_n^{\pm} \vec{P_3}$. Знание любой из них уже достаточно для восстановления D :

$$e_{3+} = \frac{P_2 + D P_1}{1 + P_1 P_2} P_3$$
, $a = e_{3-} = \frac{-P_2 + D P_1}{1 - P_1 P_2} P_3$. (3)

Интересующими нас случаями тройного рассеяния считались такие события, когда импульсы в счётчиках $C_1 - C_8 (C_8 - C_{10})$ появлялись одновременно. Сигналы с этих групп счётчиков подавались на две 5-канальные схемы совпадений типа^{/6/} с 2 г = 5 нсек, соединенные с быстродействующими пересчётными устройствами.

Измерялись 4 величины: N $_{++}$, N $_{+-}$, N $_{--}$ и N $_{-+}$, комбинации которых определяют асимметрии

$$e_{3+} = \frac{N_{++} - N_{+-}}{N_{++} + N_{+-}} \qquad H \qquad e_{3-} = \frac{N_{-+} - N_{--}}{N_{-+} + N_{--}}$$
(5)

Здесь N_{±±} - скорости счёта на выходе схем совпадений для разных геометрий рассеяния (за вычетом фона): первый индекс относится к рассеянию с направлением нормали $\vec{n_2}$, второй – с направлением нормалили $\vec{n_3}$ относительно вектора $\vec{n_1}$.

В качестве монитора использовались ионизационная камера и телескоп из сцинтилляционных счётчиков.

4. Анализ и измерение фона

Измерения показали, что величина счёта схемы совпадений без второго рассеивателя (СН₂ или С) была ничтожно малой. В то же время счёт без анализирующего рассеивателя составлял 15-20% от соответствующей величины с рассеивателем. Этот счёт вызывался следующими факторами.

 Различными комбинациями истинных и случайных совпадений.
 Например, случаи квазиупругого рассеяния протонов на нуклонах ядер могли дать истинные совпадения в счётчиках C₂C₃C₄C₅ или C₁C₂C₄C₅. При совпадении этих событий со случайными импульсами в счётчиках C₁ или C₃ появлялся счёт схемы совпадений. Возможны также случайные совпадения импульсов от частиц, пролетевших через счётчики $C_{3}C_{4}C_{5}$, с фоновой частицей, пролетевшей через счётчики $C_{1}C_{2}$, и т.д.

 Рассеянием протонов на кристалле и стенках счётчика С₃ (С₃), расположенного вблизи анализирующего рассеивателя.

Упомянутые здесь источники фона связаны с наличием второго рассеивателя и не зависят в большинстве случаев от присутствия третьего рассеивателя. Другие источники фона -случайные совпадения в нескольких счётчиках, случайные совпадения между телескопами $C_1 C_2 C_3$ и $C_4 C_5$ давали меньший вклад.

Измерение каждой из всевозможных комбинаций случайных совпадений требует эначительных затрат времени. Однако экспериментально для нескольких эначений Θ_2 было найдено, что скорость счёта от всех комбинаций случайных совпадений с достаточно высокой точностью близка к скорости счёта без мишени анализатора. Исходя из этого; за фон в данном опыте принимался счёт пятикратных совпадений в присутствии второго рассеивателя, но с убранным анализатором. Чтобы не менять эффективный порог регистрации телескопа при измерении фона, перед последним счётчиком в этом случае ставился фильтр, по тормозной способности эквивалентный анализатору.

> 5. Определение эффективной нулевой отметки шкалы отсчёта углов (ЭНОШОУ) анализирующего рассеяния

Особое внимание в работе уделялось нахождению ЭНОШОУ третьего рассеяния. Правильно найденный нуль шкалы отсчёта исключает возможность появления ложной асимметрии из-за несимметричного профиля дважды рассеянного пучка и частично из-за наличия магнитного поля, искажающего траектории рассеянных частиц. Для того, чтобы найти положение ЭНОШОУ третьего рассеяния, применялся способ, описанный в работе/7/ и основанный на многократном рассеянии поляризованных протонов на тяжелых ядрах. В качестве контрольного анализатора в нашем случае использовался свинец, тормозная способность которого выбиралась близкой к тормозной способности углеродного анализатора. ЭНОШОУ считалась найденной, если асимметрия на свинце не превышала 0,01 для рабочего угла 8⁰. Как показали оценки, основанные на экспериментальных измерениях анализирующей способности свинца для разных энергий, указанная погрешность приводила в рабочих условиях к ложной асимметрии не более 0,002-0,003, которая была меньше статистической ошибки измерений.

6. Калибровка анализирующих мишеней

Для определения анализирующей способности рассеивателей P_3 в специальном калибровочном опыте измерялась асимметрия $e_3 = P_1 P_3$. С этой целью анализатор помещался в прямой пучок протонов с поляризацией $P_1 = 0.425\pm0.013/8/$ и энергией, равной энергии протонов во втором рассеянии на исследуемом угле. Сброс энергии осуществлялся с помощью полиэтиленовых поглотителей, которые помещались перед поворотным магнитом.

При измерении калибровочной асимметрии, так же как и при измерении асимметрий $e_{3\pm}$, за величину фона принималась величина скорости счёта схемы совпадений при убранном анализаторе, но с дополнительным фильтром, который ставился перед последним счётчиком. Тормозная способность этого фильтра выбиралась равной тормозной способности анализирующей мишени.

Асимметрия в калибровочном опыте находилась из выражения

$${}_{3} = \frac{(N_{\circ} - N_{\phi})_{+} - (N_{\circ} - N_{\phi})_{-}}{(N_{\circ} - N_{\phi})_{+} + (N_{\circ} - N_{\phi})_{-}}, \qquad (6)$$

в котором N_c – счёт в присутствии анализатора C, N_{φ} – счёт без него. Полученные значения асимметрии e_3 при разных энергиях падающих на анализатор протонов представлены в табл. 1. Там же для сравнения приводятся анализирующие способности углерода, полученные другими авторами в работах^{/9,10/}. Эффективные пороги телескопов указаны в табл. 1.

9

H Габлица

	Анализ	затор-графи	п, 9 ₃ = 8 ⁰ .	<u>+</u> I,5°,nopo	IT IOO Mai		Бериллий 9 ₃ =II <u>+</u> I,5 ⁰	Графит порог	ө ₃ =II+2 0 Мэв
Энергия протонов, падающих на ана- иизатор, Мэв	599	579	556	530	472	9It	317	228	I69
$\mathcal{C}_3 \neq \Delta \mathcal{C}_3$ Hacronm.padora	0,091 <u>+</u> +0,004	0, 105 <u>+</u> ±0, 095	0,120 <u>+</u>	0,143 <u>+</u> ±0,004	0,148 <u>+</u> +0,004	0,160 <u>+</u> ±0,004	0,219 <u>+</u> ±0,007	0,215 <u>+</u> ±0,006	0, I84 <u>+</u>
$P_3 \neq \Delta P_3$, Hacrosuppagora	0,214 <u>+</u> ±0,011	0,247 <u>+</u> ±0,014	0,282 <u>+</u> +0,012	0,336 <u>+</u> ±0,014	0,348 <u>+</u> ±0,014	0,376 <u>+</u> ±0,015	0,515 <u>+</u> ±0,023	0,506 <u>+</u> +0,02I	0,433 <u>+</u>
	<i>I</i> .	Анализатор	- графит					Приме	эчание
$P_3 \neq \underline{a}P_3 / 9/$ $\theta_3 = 6^0$	0,310 <u>+</u> +0,007	0,320 <u>+</u> ±0,006	0,32 <u>9+</u> ±0,007	0,342 <u>+</u> +0,006	0,36 <u>3+</u> ±0,006	0,383 <u>-</u> ±0,005	0,425 <u>+</u> ±0,005	Данные гра	СНЯТН С ФИКА
•	Nopor 500 Man			llopor 480 Mab			Nopor 260 Mas	-	

0,37<u>+</u>

0,39<u>+</u>

0,25±

0,22+ +0,06

0,21+

0,31<u>+</u> +0,05

+ 0 P3 °.

10

U 03 = Nopor

+0,06

70 M_{3B}

±0,06

7. Ложные асимметрии

х/ и ез+ должны быть ис-Измеренные на опыте значения е а правлены с учётом некоторых ложных асимметрий Δ1. Ниже, в табл. 2 рассмотрены все возможные в наших условиях ложные асимметрии и приводятся их оценки.

Из табл. 2 видно, что наибольшую роль играют эффекты, отмеченные в пунктах 1-3. Аналогичные поправки в калибровочных измерениях были существенно меньше.

Неточности в юстировке и установке счётчиков, которые равнялись в нашем случае ± 0,2 мм, наличие неравномерной плотности протонов по профилю пучков и влияние слабого рассеянного магнитного поля ускорителя не было необходимости учитывать отдельно. Эти эффекты исправлялись подбором ЭНОШОУ (см. п.3, табл. 2).

Возможная суммарная систематическая ошибка измерения D(O) приведена в табл. 2 и является небольшой добавкой к статистической погрешности, которая находилась по формуле полного дифференциала.

8. Измерения параметра D на угле 12⁰ л.с.

Известно, что переход в область малых углов сопровождается резким падением энергии протонов отдачи и регистрация их телескопом из нескольких счётчиков становится затруднительной. Правда, использование для этой цели только одного счётчика могло бы облегчить проведение эксперимента, но в таком варианте резко возрастают фоновые отсчёты, связанные с загрузкой этого одиночного счётчика.

В наших измерениях в качестве детектора протонов отдачи использовался одиночный счётчик С4, но отмеченные выше затруднения были преодолены введением в его канал дискриминации амплитуд импульсов. Возможность введения дискриминации амплитуды основывалась на том факте, что удельные потери энергии на единицу длины пути у про-

x/B §2 отмечалось, что в сумму e_{3+} (1+ P_1P_2) + e_{3-} (1- P_1P_2) ложные асимметрии Δ_1 входят с весовым множителем P_1P_2 . В наших P 1 P= 0 + 0,2. условиях

зиожный источник жной асиметрии	Что искажается	Оценка $\Delta_{\mathfrak{l}}$	Примечание
ейф электронной паратуры	N± ± , N±	∆, ≤ 2,0 ·10 ⁻³	При измерениях e_s - пренебрежимо изло. Оценено на основании работи /6/
риация энергии по офиль дважды рас- янного пучка	θ_{λ} , $\theta_{3} \rightarrow \mathcal{N}_{\pm \pm}$, \mathcal{N}_{\pm}	$ \begin{array}{cccc} \theta_{2}^{\circ} & A_{2} & (\theta_{2}) \\ iS & -(0, \eta \pm 0, 2) \\ i8 & -(0, 5 \pm 0, 2) \\ 2i & -(0, 5 \pm 0, 3) \\ 2i & -(1, \gamma \pm 0, 7) \\ 32 & -(1, \gamma \pm 0, 7) \\ 4i & -(2, 3 \pm 1, 0) \\ 4g & -(1, \gamma \pm 0, 7) \\ 4g & -(1, \gamma \pm 0, 7) \\ 6g $	Оценено на основании результатов табл. и работ /9,10/
грешности из-за хождения ЭНОШОУ	$\theta_{k} \to P_{2}(\theta_{i})$	$\Delta_3 = (2 \div 3) 10^{-3}$	Оценено на основании результатов 10,11/и §5
риация Знергии по офиль пучка в ка- юровочном олите	θs → N±	Поправка пренебрежимо мала	Экспериментально установленный факт
жиарная систематиче	еская погрешность парам	erde dabha: / 2 2000] =	12.10-2

12

тонов отдачи велики и много больше, чем для фоновых частиц (у -кванты, е [±], нейтроны). Поэтому введение амплитудной дискриминации оказалось весьма эффективной мерой подавления загрузки одиночного счёт чика. Снижением напряжения питания этот счётчик ставился в режим, близкий к линейному, при котором счёт от постороннего излучения подавлялся примерно в тысячу раз по сравнению с обычным режимом. Было выбрано напряжение питания, равное 1250 в. В качестве дискриминатора амплитуд импульсов использовался формирователь, описанный в работе^{/6/}, с той лишь разницей, что длительность импульса была увеличена примерно в два раза для устранения зависимости эффективности регистрации от времени пролета протонов отдачи.

Проверка зависимости амплитуды импульса счётчика С₄ от энерги частиц проводилась следующим образом. Импульсы с выхода С₄ подава лись на вход амплитудного анализатора АИ-4096, который запускался совпадениями С₁С₂С₃С₄. Измерялся спектр амплитуд протонов отдачи с с поглотителем из меди (0,4 мм) перед счётчиком С₄ и без него. В первом случае средняя энергия протонов, падавших на сцинтиллятор счётчика С₄. была около 25 Мэв, во втором – 30 Мэв. Обнаруженное в. этом случае смещение спектра амплитуд (см. рис. 2) удовлетворяло расчётному для протонов, вылетевших из мишени CH₂.

Описанным выше способом проводились измерения е только на одном угле + 12⁰ л.с.

9. Результаты и обсуждения

Результаты измерений, полученные в данном опыте, представлены в табл. З и иллюстрируются рис. З. Для сравнения на том же рисунке приведены значения D на энергиях 310/7/, 435/12/, 635/4/, 600/13/ и 660/14/ Мэв. Измерения параметра D на поляризованной мишени на энергии 600 Мэв (угол 66,70°) отличается от нашего на 3,5 статистической ошибки. В анализе Мак-Грегора/1/ это измерение считается ошибочным, так как оно плохо удовлетворяет всей остальной совокупности экспериментальных данных (вклад этой точки в χ^2 равен

13

лица

Рис. 2

Таблица З

0 ⁰ л.с.		$e_{3+} \pm \Delta e_{3+}$	$e_{3-} \pm \Delta e_{3-}$	DIAD
12	27,6	0,171 <u>+</u> 0,020	-	I,140 <u>+</u> 0,240
15	34,4	0,195 <u>+</u> 0,009	-0,050 <u>+</u> 0,0II	0,940 <u>+</u> 0,079
·18	41,2	0,218 <u>+</u> 0,01 <i>1</i>	-0,067 <u>+</u> 0,014	0,890 <u>+</u> 0,078
21	47,8	0,235 <u>+</u> 0,005	-0,043 <u>+</u> 0,006	0,872 <u>+</u> 0,030
27	60,8	0,227 <u>+</u> 0,010	0,006 <u>+</u> 0,010	0,9I3 <u>+</u> 0,050
32	7I , 8	0,192 <u>+</u> 0,0I4	0,0I2 <u>+</u> 0,023	0,708 <u>+</u> 0,080
4I	90	0,154 <u>+</u> 0,012	0,151 <u>+</u> 0,012	0,697 <u>+</u> 0,040
49	106	-0,033 <u>+</u> 0,022	0,299 <u>+</u> 0,020	0,707 <u>+</u> 0,070
55	117	-0,070 <u>+</u> 0,024	0,200 <u>+</u> 0,024	0,480 <u>+</u> 0,090

Рис. 3

11,8 ед).^{/1/} Появившиеся позднее сведения о параметре D при энергии 660 Мэв/14/, полученные на поляризованной мишени Лаборатории ядерных проблем ОИЯИ, удовлетворительно согласуются с нашими результатами и анализом Мак-Грегора.

Энергетическая зависимость параметра D в обсуждаемом интервале энергий наиболее резко проявляется в области углов 27⁰-60⁰ с.ц.м., где D ≈ 1 при 635 Мэв и близок к половине на энергиях 310 + 435 Мэв. Этот факт означает, что с ростом энергии протоны деполяризуются при рассеянии слабее.

Использование предварительных результатов нашей работы^{/15/}в фазовом анализе Мак-Грегора и др. при энергии 635 Мэв, как указывают сами авторы работы^{/1/}, существенно уменьшает ошибки фазовых сдвигов. К сожалению, наши данные не позволяют, по-видимому, сократить число имеющихся наборов фазовых сдвигов.

Представляет интерес сравнить наши результаты с предсказаниями теорий, основанных на различного рода симметриях.

Так, в работе $^{/16/}$ на основе схемы M(12) установлено следующее соотношение между параметром D(Θ) и коэффициентом C $_{--}(\Theta)$:

$$[D(\Theta) + D(\pi - \Theta)] - [1 + C = (\Theta)] = \Delta = 0.$$
⁽⁷⁾

Для угла Θ=π/2 аналогичное соотношение следует также из модели SU(12) № для рассеяния барионов/17/. Результаты сравнений (7) с экспериментальными данными на энергиях 635, 430 и 310 Мэв показаны в табл.4. Из таблицы видно, что вычисленные по формуле (7) эначения Δ_{эксп.} не равны нулю. Однако это отличие невелико и в области 400+640 Мэв в среднем не превышает двух стандартных отклонений.

Авторы глубоко благодарны профессорам В.П.Джелепову, Л.И.Лапидусу и Ю.М.Казаринову за обсуждение проблем, связанных с данной работой.

Tac	лица	4

Е, Мэв'	Θ, c.ų. μ.	D(0)	Д(0]+Д(Гг-0)	Cnn (0)	⊿ экспер.
310/7,18/	90	0,50 <u>+</u> 0,06	1,00 <u>+</u> 0,12	0,63 <u>+</u> 0,06	-0,63 <u>+</u> 0,14
	90	0,67 <u>+</u> 0,10	I,34 <u>+</u> 0,20	0,40 <u>+</u> 0,04	-0,06 <u>+</u> 0,20
430/12,18/	65	0,60 <u>+</u> 0,02	T. T8+0, 05	0 46+0 05	0.00.007
	II5	0,58 <u>+</u> 0,04	1,18 <u>+</u> 0,05	0,46 <u>+</u> 0,05	-0,20 <u>+</u> 0,07
	90 .	0,70 <u>+</u> 0,04	1,40 <u>+</u> 0,08	0,68 <u>+</u> 0,15	-0,28±0,17
635/нас-	61	0,91 <u>+</u> 0,05	I,62 <u>+</u> 0,09	0,55 <u>+</u> 0,10	0,07 <u>+</u> 0,14
ТОЯЩАЯ	106	0,71 <u>+</u> 0,07			
pauora /	72	0,71 <u>+</u> 0,08		0.50.0.77	0 40 0 77
	117	0,48 <u>+</u> 0,09	1,19 <u>+</u> 0,12	0,59 <u>+</u> 0,11	-0,40+0,17

- Литература
- 1. M.MacGregor, R.Arndt, P.Wright. Phys. Rev., <u>169</u>, 1149 (1968).
- 2. Л.Н.Глонти, Ю.М.Казаринов, А.М.Розанова, И.Н.Силин. Препринт ОИЯИ, P1-3525, Дубна, 1967.
- Р.Я.Зулькарнеев, В.С.Киселев, В.С.Надеждин, В.И.Сатаров, Препринт ОИЯИ, Р1-4155, Дубна, 1968.
- Ю.П.Кумекин, М.Г.Мещеряков, С.Б.Нурушев, Г.Д.Столетов. ЖЭТФ, <u>38</u>, 1451 (1960); ЯФ, <u>2</u>, 892 (1965).
- 5. L.Wolfenstein, Phys. Rev., <u>96</u>, 1654 (1954).
- 6. В.С.Надеждин. Препринт ОИЯИ, 13-3379, Дубна, 1967.
- 7. O.Chamberlain, E.Segre, R.Tripp et al. Phys.Rev., 105, 288 (1957)
- Р.Я.Зулькарнеев, В.С.Надеждин, В.И.Сатаров. Препринт ОИЯИ, Р1-3189, Дубна, 1967.
- P.G.MacManigal, R.D.Eandi , S.N.Kaplan, B.J.Moyer. Phys. Rev., <u>148</u>, 1280 (1966).
- E.Eandy, R.Kenney, V.Peterson. Nucl. Instr. and Meth., <u>32</u>, 213 (1965).
- 11. Р.Я.Зулькарнеев, В.С.Киселев, В.С.Надеждин, В.И.Сатаров. Ядерная физика, <u>6</u>, 995 (1967).
- R.Rooth, E.Engles, S.Wright et al. Phys. Rev., <u>140</u>, 1533 (1965);
 Phys. Rev., <u>169</u>, 1026 (1968).
- 13. M.Borgini, E.Heer, B.Levart et al. Helv. Phys.Acta, 39, 579(1966).
- 14. J.Bystricky, J.Cech, Z.Janout et al. Phys. Lett., 28B, 572 (1969).
- Р.Я.Зулькарнеев, В.С.Надеждин, В.И.Сатаров. Материалы 1 Международного совещания по NN-и п N - взаимодействиям. Дубна, 1968.
- 16. P.Freund, S.Lo. Phys. Rev., <u>140</u>, 927B (1965).
- P.Kantor, T.Kuo, R.Pierles, T.Truman. Phys. Rev., <u>140</u>,1008B
 A.Baretvas. Phys. Rev., <u>171</u>, 1392 (1968).

Рукопись поступила в издательский отдел 19 июня 1969 года.