4442

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна

TEXHM

ANTEADH

Эка. чит. зала

P1 - 4442

И.К.Взоров

ЭМПИРИЧЕСКАЯ ЗАВИСИМОСТЬ ПРОБЕГ - ЭНЕРГИЯ ДЛЯ ПРОТОНОВ С ЭНЕРГИЯМИ 100 - 100000 МЭВ

P1 - 4442

И.К.Взоров

ЭМПИРИЧЕСКАЯ ЗАВИСИМОСТЬ ПРОБЕГ - ЭНЕРГИЯ ДЛЯ ПРОТОНОВ С ЭНЕРГИЯМИ 100 - 100000 МЭВ

Средний свободный пробег R частицы с кинетической энергией Т определяется, как известно, выражением

$$R = \int_{0}^{T} \left[-\frac{1}{\rho} - \frac{dE}{dx} \right]^{-1} dE , \qquad (1)$$

где *ρ* – плотность среды, выраженная в г/см³, a – dE – средние ионизационные потери энергии, вычисляемые по формуле Бете-Блоха. Для частиц тяжелее электрона формула Бете-Блоха имеет вид:

$$-\frac{dE}{dx} = \frac{2\pi n z^2 e^4}{m \beta^2 c^2} \left[\ln \frac{2m \beta^2 c^2 W_{max}}{l^2 (1-\beta^2)} - 2\beta^2 - \delta - U \right]$$
(2)

Здесь п – число электронов в 1 см³ вещества; т – масса электрона; $\beta = \frac{v}{c}$ (v – скорость частицы); z – заряд частицы; 1 – средний потенциал ионизации атомов среды; W _{max} – максимальная энергия, передаваемая частицей атомным электронам; δ – поправка на эффект плотности, связанный с поляризацией среды; U – поправка, учитывающая уменьшение тормозной способности электронов за счёт их связи на К- и L – оболочках атомов при малых скоростях налетающей частицы.

Имеется эначительное количество расчётных данных относительно ионизационных потерь и пробегов заряженных частиц разных энергий в различных веществах, сведенных в соответствующие таблицы (см., например, сборники/1-3/).

Однако пользоваться такими таблицами не всегда удобно (например, при обработке результатов измерений на ЭВМ), да и не всякий раз они есть под рукой. Поэтому представляется полезным найти аналитическую зависимость между пробегом и энергией частицы, с достаточной степенью точности аппроксимирующую имеющиеся табличные данные.

Для протонов с энергией от 2 до 200 Мэв такая зависимость имеет вид/4/:

$$T = aR^{b}$$

(3)

(4)

(4')

причём от состава тормозящего вещества зависит только параметр а, а параметр b = 0,574 является универсальным.

В области энергий от 200 до 1000 Мэв соотношение (3) справедливо при эначении b = 0,656/4/.

На основании этого заключения, в работе⁷⁵⁷ удалось аппроксимировать данные таблиц/3/ зависимостями

T = VR

и

 $\mathbf{R} = \mathbf{AT}^{\mathbf{b} + \mathbf{cT}}$

справедливыми (в пределах 10-15%) в области энергий протонов от 10 до 400 Мэв. b = 1,748; c = -4,84.10⁻⁵; w = 0,572 и t = 1,2.10⁻⁴ – универсальные для всех веществ постоянные, A и V зависят от Z атомного номера вещества. Сведений о существовании подобного рода эмпирических зависимостей между пробегом частицы и ее энергией в

области еще больших энергий, где соотношения типа (3) и (4)-(4') теряют справедливость, в литературе нет.

В связи с этим ниже приводятся найденные автором зависимости между пробегом и энергией частиц, справедливые в широкой области энергий. Они имеют вид:

$$\mathbf{R} = \mathbf{a} \left(\begin{pmatrix} \mathbf{n} & \mathbf{T} \end{pmatrix} \right)^{\mathbf{b}}, \tag{5}$$

$$T = (c)^{R^{1/b}}$$
 (5')

(R – в г/см², Т – в Мэв), где a, b и с – параметры, -зависящие от атомного номера тормозящего вещества.

Для протонов выражениями вида (5) и (5') удается аппроксимировать данные приводимой в^{/1/} таблицы пробег – энергия, вычисленные Штернхеймером для наиболее часто встречающихся веществ (а для СН и СН₂ – Ричем и Мадеем), начиная примерно с энергии 100 Мэв вплоть до максимального, приводимого в таблице^{/1/} эначения энергии – 100000 Мэв. При этом отклонения вычисляемых по формулам (5) и (5') эначений R и T от соответствующих табличных величин составляют ~ 3-4%, лишь вблизи концов указанного интервала энергий протонов увеличиваясь до

5-7% (рис. 1). Соответствующие значения параметров a,b и c, определенные по методу наименьших квадратов, приведены в таблице.

Вещество	a(10-6)	b	С	ā(10-6)	c
Be	4,18	9,50	39,78	6,20	37,32
C	4,22	9,44	40,70	5,64	38,84
A	5,64	9,36	38,06	6,30	37,39
Cu	7,40	9,28	35,49	7,16	35,67
Рь	14,24	9,09	30,38	9,26	32,53
Воздух	5,88	9,27	39,06	5,56	39,41
CH	4,07	9,40	42,25	4,97	41,07
	3,68	9,42	43,66	4,62	42,28

Поскольку параметр b меняется слабо (в пределах 9,1-9,5), то для оценок R и T с точностью, примерно в два раза худшей, чем указанная

выше, его можно считать постоянным, приняв для всех веществ $\mathbf{b} = 9,30$. Получающиеся при этом значения параметров а и с, обозначенные \mathbf{a} и \mathbf{c} , приведены в пятом и шестом столбцах таблицы.

Значения пробегов быстрых протонов, вычисляемых по формуле (5), могут быть использованы для определения пробегов других частиц с помощью соотношения

$$R_{i}(T_{I}) = \frac{1}{z_{\ell}^{2}} - \frac{m_{1}}{m_{p}} R_{p} \left(\frac{m_{p}}{m_{1}} T_{i} \right), \qquad (6)$$

где R₁ и T₁ - соответственно пробег и энергия частицы с массой m₁ и зарядом z₁ , m_p - масса протона, $R_p(\frac{m_p}{m_1}T_1)$ - пробег протона, обладающего энергией $\frac{m_p}{m_1}T_1$. Таким образом, для μ - мезонов область применимости соотношений (5) и (5') составляет примерно 10-10000 Мэв, для π -мезонов - 15-15000 Мэв, для К -мезонов - примерно 50-50000 Мэв. Таблицы же пока что содержат данные по пробегам этих частиц до 5000 Мэв/2/.

Литература

- 1. High Energy and Nuclear Physics Data Handbook, Rutherford High Energy Laboratory, Chilton (1963).
- 2. Penetration of Charged Particles in Matter, Natl.Acad.Sci.-Natl. Res. Council. Publ. 1133 (1964).
- 3. C.F.Williamson, J.P.Boujot, J.Picard, Raport CEA_R3042 (1966). 4. До Ин Себ. ЖЭТФ, <u>43</u>, 121 (1962).
- 5. E.Barouch, Nucl. Instr. and Meth., 61, 113 (1968).

Рукопись поступила в издательский отдел 22 апреля 1969 года.