<u>С 346.46</u> <u>г-859</u> <u>Сообщения</u> объединенного института ядерных исследований дубна

P1 - 4412

20

В.Г.Гришин, М.Иреш, Д.К.Копылова, В.Б.Любимов, М.М.Муминов, А.Г.Павлова, В.В.Петржилка, М.Сук, З.Трка, Я.Тркова, Б.С.Юлдашев

1969, T. 1025, C. 1201-1211.

ИЗУЧЕНИЕ КАНАЛОВ РЕАКЦИИ **ПРИ рс = 4 ГЭВ**

P1 - 4412

В.Г.Гришин, М.Иреш, Д.К.Копылова, В.Б.Любимов, М.М.Муминов, А.Г.Павлова, В.Б.Петржилка*, М.Сук*, З.Трка, Я.Тркова, Б.С.Юлдашев

> ИЗУЧЕНИЕ КАНАЛОВ РЕАКЦИИ $\pi_{P \rightarrow n} \pi^+ \pi^- m \pi^\circ$ ПРИ PC = 4 ГЭВ

* Карлов Университет, Прага

SUDDATE STATES FIRE LESS TERM

\$1. Методика эксперимента

Целью настоящей работы является изучение реакции π¯р→вπ⁺π¯mπ[°](1); при рс = 4 Гэв.

По правилам, описанным в работе /1/, было дважды просмотрено 150 тысяч стереоснимков с 24-литровой пропановой пузырьковой камеры ЛВЭ ОИЯИ. Отбирались события типа:

$$\tau^- p \to \pi^+ \pi^- \gamma \dots \tag{II}$$

($\epsilon = 97\%$), где γ -квант регистрировался по (e^+e^-) парам конверсии x). Одно событие соответствовало сечению (0,48±0,03) μ бн.

Отобранные события измерялись на полуавтоматах и считались по геометрической программе 1-33 и программе 7-1 с накоплением информации на магнитной ленте ЭВМ $^{/3/}$. В программу накопления информации были введены критерии отбора событий. В частности, отбрасывались те события, где хотя бы у одной частицы эвезды ошибка в определении импульса была больше 30% ($\frac{\Delta p}{p}$ > 30%). Выборка событий, связанная с этим ограничением, исправлялась введением усредненного веса события с у-квантом.

Критерий принадлежности γ -кванта к звезде определялся величиной $\left(\frac{\theta}{\Delta\theta}\right)^2$, где θ - угол между суммарным импульсом e^+e^- и на правлением АВ (рис.1). Экспериментальное распределение величин $\left(\frac{\theta}{\Delta\theta}\right)^2$ в отобранных событиях представлено на рис. 2.

x) В работах /1,2/ исследовалась та же реакция $\pi^- p \rightarrow n \pi^+ \pi^- m \pi^0$ (1), но отбирались события с двумя и большим числом зарегистрированных γ - квантов.

Для исключения фоновых событий, связанных с реакцией

$$\pi \bar{p} \rightarrow p \pi \bar{m} \pi^{\circ} , \qquad (III)$$

на следах положительных частиц с рс< 1 Гэв, измерялась ионизация (g*). Измерение ее проводилось способом, описанным в работе ^{/4/}. Результаты измерений показаны на рис. 3.

Для выделения фоновых взаимодействий на углероде(*п*с – события) в каждом событии была рассчитана недостающая масса М_х (*ппу*)

$$\pi \stackrel{-}{p} \rightarrow \pi^+ \pi^- \gamma + M_{\chi} (\pi \pi \gamma)$$

и для анализа были использованы только те события, для которых

$$M_{(\pi\pi\gamma)} > [M(n) - \delta] = 700 M \Rightarrow B_{,}$$

где M(n) – масса нейтрона, а δ – ошибка в недостающей массе в области M(n).(δ≈ 0,25 M(n)) . Доля выброшенных π с – событий (М(ππγ)< < 700 Мэв) составила 12% (рис. 4).

В результате для дальнейшего изучения остались 2374 события реакции

$$\pi^{-} \mathbf{p} \rightarrow \mathbf{n} \pi^{+} \pi^{-} \mathbf{m} \pi^{\circ} .$$
 (1)

В отобранных событиях оценена доля фоновых взаимодействий, которые нам не удалось исключить.

Статистическим методом по δ – электронам определена доля протонов с рс>1 Гэв (реакция III) /4/. Достаточно большая суммарная длина положительных следов с рс> 1 Гэв позволила ограничиться δ – электронами с $E_{\delta} \geq 3$ Мэв. Всего было найдено 80 таких δ –электронов (эффективность 99%), что соответствует доле протонов в положительных частицах \approx (10±4)%. С другой стороны, если ограничиться импульсами положительных частиц 1+1,6 Гэв/с, тем же методом /4/ можно получить иную оценку доли протонов \approx (4±2)% x).

x) В работе /5/ было показано, что спектр протонов практически исчезает прирс > 1,6 Гэв.

Учитывая сечения рождения странных частиц ^{/6/} и эффективность регистрации нейтральных странных частиц в пропановой камере ^{/7/}, мы оценили примесь событий со странными частицами <(5±2)%.

Число событий с парами Далица, имитирующих реакцию (1) , составляет \leq 1%.

Для нахождения усредненных весов событий с у -квантами (W) использовалась программа "Streva" /8/. В ней при моделировании событий применялись те же критерии отбора, что и для действительных событий. Средний вес событий типа (II) оказался равным 15,5±0,2. Для расчета физических величин и построения гистограмм с учетом весов использовалась программа "Паук" (см. Приложение).

§2. Угловые и импульсные характеристики 7⁴-мезонов

Угловые распределения π^{\pm} -мезонов в системе центра масс приведены на рис. 5. Из этих распределений видно, что существует небольшая асимметрия в вылете π^{\pm} -мезонов. Коэффициенты асимметрии вычислены по формуле $k = \frac{N-N}{N+N}$ и приведены в таблице 1. Там же показа-

Реакция	κ _π _	κ _{π+}	
$\pi^{-} p \rightarrow \pi^{+} \pi^{-} n$ $\pi^{-} p \rightarrow \pi^{+} \pi^{-} n m \pi^{\circ}$ $\pi^{-} p \rightarrow 2\pi^{+} 2\pi^{-} n$	0,6 0,25 <u>+</u> 0,02 0,1	0,35 0,28 <u>+</u> 0,02 0,1	

Таблица 1

ны результаты, полученные с помощью водородной камеры, облученной π^- -мезонами с рс = 4 $\Gamma_{\partial B}$ /9,10/. Средние значения импульсов π^{\pm} - мезонов в с.ц.м., рассчитанные из импульсных распределений (рис. 6), а также данные работ /9,10/, приведены в таблице 2.

На рисунке 7 приведена зависимость средних поперечных импульсов от продольных в с.ц.м. для π^{\pm} -мезонов. В области малых продольных импульсов экспериментальное распределение несколько расходится с расчетами, выполненными по статистической теории.

Реакция	Р _ (Мэв)		Р * (Мэв)	
	-	a +	π -	<i>"</i> +
$\pi^- p \rightarrow \pi^+ \pi^- n m \pi^\circ$	329 + 4	341 <u>+</u> 4	456 + 5	443 <u>+</u> 5
$\pi^- p \rightarrow 2\pi^+ 2\pi^- n$	289 <u>+</u> 9	306 <u>+</u> 10	389 <u>+</u> 11	397 <u>+</u> 12

Таблица 2

Наши данные и результаты работы /1/ позволяют определить с хорошей точностью среднее число π° -мезонов на одно взаимодействие типа (f). Оно оказалось равным $\overline{N}_{\pi^{\circ}}=1,7\pm0,1$; вычисления по статистической теории множественного рождения дают значение $\overline{N}_{\pi^{\circ}}=1,7$ /11/.

На рис. 8 приведено импульсное распределение У -квантов в лабораторной системе координат. Распределение имеет широкий пик, соответствующий У -квантам от распада π^0 -мезонов, и монотонный спад без каких-либо особенностей. График приведен с учетом и без учета весов и хорошо иллюстрирует зависимость величины веса событий от энергии У -кванта.

Распределение по квадрату переданного импульса ненаблюдаемым частицам показано на рис. 9. Из рисунка видно, что это распределение отличается от распределений, характерных для периферических взаимодействий.

\$3. Определение сечений каналов реакции

 $\pi^- p \rightarrow n \pi^+ \pi^- m \pi^0 \pi p \mu p c = 4 \Gamma p B$

Определение сечений каналов реакции (1) проводилось на основе анализа экспериментальных распределений эффективных и недостающих масс (рис. 10,11). Данные о сечениях образования одного и двух π° – мезонов в этой реакции были получены в работе /1/.

 $\sigma (1\pi^{\circ}) = (3,0 + 1,2)_{MGH}; \sigma (2\pi^{\circ}) = (3,4 + 0,6)_{MGH}.$

Большая статистика событий, полученная в настоящей работе, позволяет сделать более детальные заключения о сечениях. Экспериментальные данные по π⁻ Р - взакмодействиям при Рс² 4 Гэв /12/ вклад в процесс (1) могут дать следующие каналы реакций:

$$\pi^{-} \mathbf{p} \to \mathbf{n} \pi^{+} \pi^{-} \pi^{\circ} \tag{1}$$

$$n\pi^{+}\pi^{-}2\pi^{\circ}$$
 (2)

$$n \pi^+ \pi^- 3 \pi^0$$
 (3)

$$n\rho\pi^{\circ} \rightarrow n\pi^{+}\pi^{-}\pi^{\circ}$$
(4)

$$\mathbf{n}\omega\pi^{\,\circ} \rightarrow \mathbf{n}\pi^{\,+}\pi^{\,-}\pi^{\,0}_{\,1}\pi^{\,0}_{\,2} \tag{5}$$

$$\mathbf{n}\omega \to \mathbf{n}\pi^+\pi^-\pi^0 \tag{6}$$

$$N^* \rho^\circ \to n \pi^\circ \pi^+ \pi^-$$
 (7)

$$N * \pi^+ \pi^- \rightarrow n \pi^\circ \pi^+ \pi^-$$
(8)

$$N^*\pi^+\pi^- \to n\pi^0 \pi^0 \pi^+\pi^-, \qquad (9)$$

где N* – нуклонные изобары. Распределения $M_x(\pi\pi)$ как в нашей работе, так и в работе /13/ показывают, что сечение образования барионных изобар в реакциях (8,9) при этих энергиях мало ($\sigma \leq 0.2$ мбн). Аналогичное заключение можно сделать из данных работы /14/, где исследовались 4-лучевые взаимодействия при р с = 4,16 Гэв. Сечение совместного рождения барионных и мезонных ревонансов в π^- р-соударениях при р с = 4 Гэв также несущественно /12/. Реакции с образованием η -мезона будут давать вклад в отобранные случаи $\approx 0,2\%$ /2,15/. Сечение рождения других бозонных резонансов, например, A -мезонов, также мало и составляет $\leq 2\%$ от полного сечения /16/.

Ŕ

Таким образом, при анализе экспериментальных распределений по эффективным и недостающим массам необходимо учитывать только реакции (1-6). Расчет фазовых кривых для этих реакций проводился по программе ФОРС /17/. Для реакций (5,6), где образуется ω -мезон, расчеты фазовых кривых проводились с учетом матричного элемента распада $\omega \rightarrow 3\pi$ (M $\approx \overline{P}_1 \times \overline{P}_2$, где \overline{P}_1 и \overline{P}_2 - импульсы π -мезонов в системе покоя *w* -мезона) ^X. В качестве иллюстрации на рис. 12 приведены рассчитанные кривые для М(ту) и М(т л). Определение сечений каналов проводилось на основе фитирования (подгонки) экспе-(1-6) реакции (I) риментальных распределений рассчитанными кривыми /18/ по программе. описанной в работе /19/. При анализе выяснилось, что фитирование распределений по недостающим массам приводит к большим ошибкам в определении сечений каналов реакций. Возможно, это связано с тем, что распределения М, каналов (1-6), рассчитанные по программе ФОРС, близки друг к другу. Наилучшими для фитирования оказались распределения по эффективным массам $M(\pi\pi\gamma)$ и $M(\pi\pi)$.

В результате анализа экспериментальных распределений были получены следующие значения сечения каналов (1-5) xx):

> $σ(1) = (2,5 \pm 0,7) M6H$ $σ(2) = (1,6 \pm 0,5) M6H$ $σ(3) = (0,5 \pm 0,2) M6H$ $σ(4) = (0,5 \pm 0,5) M6H$ $σ(5) = (0,8 \pm 0,2) M6H$

и суммарное сечение процесса (1), равное

 $\sigma(I) = (5,9 + 1,0)$ MGH.

х) При расчете кривых $M(\pi\pi\gamma)$ и $M(\pi\gamma)$ по программе ФОРС для канала $\pi^-_{p\to\omega\,n\,\pi^0}$ (5) γ -квант в половине случаев берется от π_1^0 , а в половине случаев – от π_2^0 .

xx) Совместный учет кривых для каналов (5,6) ухудшает условия фитирования. Наименьшее значение χ^2 получается при учете только канала 5. Сечение образования ω -мезона в реакции $\pi_{P} \rightarrow \omega_{B}$ (6) при рс = = 5 Гэв составляет 0,13 мбн /16/.

Для кривых эффективных масс $M(\pi\pi)$ и $M(\pi\pi\gamma)$ сумма значений χ^2 составляет 79 при числе экспериментальных точек, равном 67. Значение χ^2 резко возрастает при фитировании экспериментальных кривых только двумя фазовыми кривыми – с рождением одного и двух π° -мезонов (1,2).

Для подтверждения полученных результатов нами была проделана та же процедура фитирования распределений $M(\pi\pi\gamma)_{H} M(\pi\pi\gamma)_{GRR}$ событий с импульсом положительной частицы pc<1 Гэв. (рис. 13). (В этих событиях среди вторичных частиц заведомо нет протонов).

Данные по сечениям каналов (1-5) согласуются в пределах ошибок с результатами, полученными для всех взаимодействий.

> σ (1) = (2,5 ± 0,6) MGH σ (2) = (2,1 ± 0,6) MGH σ (3) = (0,4 ± 0,3) MGH σ (4) = (0,4 ± 0,4) MGH σ (5) = (0,9 ± 0,8) MGH

суммарное сечение получается равным

$$\sigma(1) = (6,3 + 1,0)$$
 мбн.

Сечение образования одного π° -мезона в каналах (1,4) составляет (3,0 ± 0,8) мбн, а сечение образования двух и трех π° -мезонов (каналы 2,3,5) составляет (2,9±0,7) мбн; они совпадают с полученными в работе ^{/1/}. Найденное нами полное сечение реакции (I) хорошо согласуется с даниыми работ ^{/9,12/}: σ (I) = (5,57 ± 0,17) мбн и σ (I) = (6,10 ± 0,14 мбн. Эти результаты были получены на снимках с пузырьковых водородных камер.

\$4. Оценка верхней границы сечения реакции π⁻ p → n η → n π⁺ π⁻ у

Наши данные позволили оценить сечение рождения η -мезона в реакции $\pi^- p \rightarrow n \eta \rightarrow n \pi^+ \pi^- \gamma$ (IV) при рс = 4 Гэв. Для оценки сечения использовалось распределение (рис. 14) по $M_x(\pi\pi\gamma)$ событий, у которых (520 < м($\pi\pi\gamma$) < 576) Мэв. Была получена верхняя граница сечения, равная

σ≤ (10 + 7) μ 6H,

Этот результат согласуется с данными работы /12/. Оценить сечения рождения ω_{-} , ρ_{-} , ϕ_{-} мезонов в реакциях типа (IV) мы не могли из-за наличия большого числа фоновых событий в области масс этих мезонов.

Нам приятно поблагодарить за полезные обсуждения Г.И. Копылова, А.В. Никитина, Ю.А. Трояна; за помощь в вычислениях фазовых кривых – В.Е. Комолову.

Мы благодарны лаборантам Л. Аверьяновой, Т. Журавлевой, Т. Кулагиной и Н. Шариковой, а также лаборантам группы просмотра и измерений за помощь в работе.

Приложение

Программа "Паук" написана на языке "Алгол" и использовалась для физической обработки событий с ^у-квантами. Программа рассчитана для ЭВМ типа М-20, БЭСМ-3, БЭСМ-4. Ввод числового материала в программу может осуществляться как с магнитной ленты, так и с перфокарт. На каждое событие отводится одна зона магнитной ленты. Числовой материал, записанный в зоне магнитной ленты, является стандартной выдачей программ 1-33, 7-1 и программы "Streva". Следы события располагаются в определенном порядке: первичный след, след отрицательной частицы, след положительной частицы и у - квант.

Программа "Паук" формирует новый массив, куда также заносятся вычисленные значения недостающих и эффективных масс, которые становятся как бы новыми "частицами", В этот массив для каждой частицы входят величины: Р, ℓ m, n, ΔP^2 , Δa^2 , $\Delta \beta^2$, M, ΔM^2 , P*, ℓ *, m*, n*, и т.д.

Выдача программы - построенные гистограммы - записываются на отдельную магнитную ленту. Гистограммы выводятся на печать и на перфокарты. Программа состоит из отдельных процедур, которые по желанию

могут быть изменены. Использованные в программе формулы описаны, например, в работе /20 /.

Программа состоит из следующих процедур:

1. Совмещение направления первичного пучка с осью У -камеры.

2. Определение недостающих масс.

3. Определение эффективных масс.

4. Нахождение квадратов 4-мерных импульсов.

5. Определение импульсных и угловых характеристик частиц в с.ц.м.

6. Вычисление относительных ошибок <u>АМ</u> для эффективных и недостающих масс (ошибки в M_x выдаются только с учетом импульсных ошибок следов, а ошибки в М_{эф.} - с учетом импульсных и угловых ошибок следов).

7. Нахождение средних значений величин и их ошибок с учетом и без учета весов.

8. Построение гистограмм (одновременно может строиться до 40 гистограмм).

Для каждого интервала гистограммы приводится:

1) число событий в данном интервале N,

2) сумма весов (**Σ** W) всех событий в данном интервале,

3) сумма квадратов весов ($\sqrt{\Sigma W^2}$ - ошибка в числе событий с весом в данном интервале).

Литература

- 1. Я. Бэм, В.Г. Гришин, Э.П. Кистенев, Д.К. Копылова, А.Г. Кривенцова, М.М. Муминов, Му Цэюнь, В.Д. Рябцов, З. Трка. ЯФ, т.5, 1054 (1967).
- 2. В.Г. Гришин, К.Г. Гулямов, Д.К. Копылова и др. Препринт ОИЯИ P1-3677, Дубна (1968).
- 3. Н.Ф. Маркова, В.И. Мороз, А.В. Никитин, И.В. Попова, Г.Н. Тентюкова, Ю.А. Троян. Препринт ОИЯИ 10-3545, Дубна (1967).
- 4. Я. Бэм, В.Г. Гришин, А.Г. Кривенцова, М.М. Муминов, З.Трка. Препринт ОИЯИ Р-2842, Дубна (1966).
- 5. M.Block, N.C. XXVIII, 279 (1963).

*

- 6. J.Bartsch, L.Bondar, R.Speth et al. N.C. 43A, 1010, (1966).
- 7. Б.П. Банник, Ким Хи Ин, А.А. Кузнецов, Н.Н. Мельникова, Б. Чадраа. Препринт ОИЯИ 1-3682, Дубна (1968).
- 8. В.Г. Гришин, М. Иреш, А.Г. Кривенцова, М.М. Муминов, З. Трка. Препринт ОИЯИ 1-3574, Дубна (1967).
- 9. L.Bondar, K.Bondartz, M.Deutschmann, et al. N.C. XXXI, 729(1964).
- 10. L.Bondar, K.Bondartz, H.Burmeister et al. N.C.XXXI, 485 (1964).
- 11. В. Барашенков, В. Мальцев, И. Патера. Препринт ОИЯИ Р-1577, Дубна (1964).
- 12. I.Ohba, T.Kobajashi. Supplement of the Progress of Theoretical Physics, N41-42, 90 (1967).
- 13. R.L.Eisner, P.B.Johnson, P.R.Klein et al. Phys. Rev., <u>164</u>, 1699 (1967).
- 14. Suk Urk Chung, , Orin J.Dahl, J.Kirz et al. Phys. Rev., <u>165</u>, 1491 (1968).
- 15. O.Guisan, J.Kirz, P.Sonderegger et al. Phys. Lett., 18, 200 (1965).
- 16. J.Labberique, Topical conference on High- Energy collisions of Hadrons. Volume II, CERN, (1968).
- 17. В.Е. Комолова, Г.И. Копылов. Препринт ОИЯИ 1-3574, Дубна (1964).
- 18. J.H.Boyd, A.R.Erwin, W.D.Walker et al. Phys. Rev., <u>166</u>, 1458 (1968).
- 19. И.Н. Силин. Препринт ОИЯИ 11-3362, Дубна (1967).
- 20. Т.В. Рыльцева, Л.А. Тихонова. Препринт ОИЯИ 11-3458, Дубна (1967).

Рукопись поступила в издательский отдел 11 апреля 1969 года.

ŧ

.

Рис.3. Результаты измерений g* для вторичных положительных частиц с рс = (0,4-1)Гэв. Значком - "+" отмечены идентифицированные протоны и K⁺-мезоны.

Å

a

Рис.7. Зависимость средних поперечных импульсов π^- и π^+ - мезонов от продольных импульсов пионов в с.п.м. Плавные кривые – расчеты по статистической теории; а) π^- -мезоны, б) π^+ - мезоны.

Ś.

.

÷

21

۶.

Рис.11. Спектры эффективных масс частиц из реакции (1) (гистограммы, отмеченные пунктиром, получены в результате фитирования экспериментальных распределений фазовыми кривыми) а) м ($\pi^+\pi^-$), б) М($\pi^+\pi^-\gamma$), в) М($\pi^+\gamma$), г) М($\pi^-\gamma$)

Рис.11.

Рис.12. Фазовые кривые, рассчитанные по программе ФОРС а) $M(\pi^+\pi^-)$ б) $M(\pi^+\pi^-)$ – кривая для канала $\pi^-_{p\to n} \omega \pi^{\circ}_{\to n} \pi^+\pi^- \pi^{\circ}_{1} \pi^{\circ}_{2}$ (пунктир) рассчитана в предположении, что у –квант берется от распада π°_{2} -мезона.

Рис.13. Спектры эффективных масс для событий, в которых положительные частицы имеют $p \le 1$ Гэв. а) М($\pi^+\pi^-$), б) М($\pi^+\pi^-\gamma$)

ł