

А.А.Кузнецов, Н.Н.Мельникова, Т.В.Рыльцева, Б.Чадраа, В.Балинт, А.Михул , Д.Мумуяну Т.Понта , С.Фелеа

рождение резонансов в реакциях $\pi^- p \rightarrow \pi^+ \pi^- \Lambda^\circ \kappa^\circ$ и $\pi^- p \rightarrow \pi^- \pi^\circ \Lambda^\circ \kappa^+$ при 4,0 гэв/с

1969

BU(OKMX)HEPINH

RAGPATOPHS

P1 - 4336

А.А. Кузнецов, Н.Н.Мельникова, Т.В.Рыльцева, Б.Чадраа*, В.Балинт,** А.Михул**, Д.Мумуяну**, Т.Понта**, С.Фелеа**

рождение резонансов в реакциях $\pi^- p \rightarrow \pi^+ \pi^- \Lambda^0 \kappa^0$ и $\pi^- p \rightarrow \pi^- \pi^0 \Lambda^0 \kappa^+$ при 4,0 гэв/с

Направлено в ЯФ

• Институт атомной физики (г.Бухарест).

2753/ w

Физический институт АН МНР (г. Улан-Батор)

Colemneneria electrityr BRODELLY RECEIPTED **医彩版**」。此下了**区**网络

Данная работа является продолжением цикла исследований ^{/1,2,3/}, которые посвящены изучению странных частиц в $\pi^- p$ взаимодействиях при 4,0 Гэв/с и выполнены на материале с 24 –литровой пропановой пузырьковой камеры Лаборатории высоких энергий ОИЯИ. В работе приводятся данные о рождении резонансов в реакциях

 $\pi \bar{p} \rightarrow K^+ \pi^- \Lambda^0 \pi^0 x/$

$$\pi^{-}_{p \to} \pi^{+} \pi^{-} \Lambda^{0} \kappa^{0}$$
⁽¹⁾

(2)

и

ра равнялась (96+3)%.

Для анализа реакций (1) и (2) было использовано 230000 фотографий. Отбирались случаи неупругих взаимодействий *п*⁻ -мезонов на водороде, в которых наблюдался распад одной или двух V⁰-частиц в рабочем объеме камеры. При отборе событий применялись критерии, которые были описаны ранее^{/4/}. Средняя эффективность двукратного просмот-

Измерения производились на полуавтоматах Лаборатории вычислительной техники и автоматизации ОИЯИ и Института атомной физики

^{x/}Кинематика распадов $\Lambda^{0}_{,-}$ и Σ^{0}_{-} гиперонов не позволяла в пределах точности измерений различать эти частицы, поэтому символ (Λ^{0}) относится к реакциям с рождением $\Lambda^{0}_{,-}$ и $\Sigma^{0}_{,-}$ гиперонов.

(г. Бухарест). Полученные данные обсчитывались по геометрической и кинематической программам ^{/5,6,7/} на ЭВМ Лаборатории вычислительной техники и автоматизации.

Методика идентификации V^0 - частиц и выделения каналов реакций была описана ранее /1,2/. При анализе событий дополнительно привлекались результаты ионизационных измерений на следах вторичных заряженных частиц звезд и V^0 - событий /8/, а также учитывалась картина распадов останавливающихся частиц в камере.

В таблице приведены суммарные данные о числе событий, относящихся к соответствующим каналам реакции ^{x)}. В связи с ограниченными размерами камеры каждому событию приписывался вес, который вычислялся методом моделирования с помощью программы 671 ^{/9/}. Ниже во всех распределениях события приводятся с соответствующими весами.

Реакция $\pi^- p \rightarrow \pi^+ \pi^- \Lambda^0 K^0$ (1)

События, относящиеся к реакции (1), выделялись при анализе каналов реакции вида

 $\pi \stackrel{-}{}_{p} \rightarrow \pi \stackrel{+}{} \pi \stackrel{-}{}_{K} \stackrel{0}{} (\Lambda^{0}) ,$ $\rightarrow \pi \stackrel{+}{} \pi \stackrel{-}{} \Lambda^{0} (K^{0}) ,$ $\rightarrow \pi \stackrel{+}{} \pi \stackrel{-}{} \Lambda^{0} K^{0} .$

На основании полного числа событий этого типа было определено сечение реакции (1). Оно оказалось равным $\sigma(1)=154\pm14$ мкб. При определении сечения вводились поправки на примесь других частиц в пучке (8%), на примесь событий взаимодействий π^- -мезонов на связанном протоне (19%), на нейтральные моды распада Λ^0 и K^0 , на эффективность просмотра и на потерю событий в связи с ограниченными размерами камеры /1/.

Для изучения рождения резонансов в реакции (1) были построены распределения эффективных масс различных комбинаций частиц (см. рис. 1).

x)События, которые нельзя было однозначно идентифицировать, были включены в статистику как для реакции (1), так и для реакции (2) с весом 1/2.

Распределение $\Lambda^0 \pi^+$ -комбинаций указывает на рождение резонанса Y *+ (рис. 1а). Сравнение экспериментального распределения с линейной комбинацией фазового пространства и брайт-вигнеровской кривой для резонанса Y *+ дает вклад Y *+ в этот процесс, равный (9,9+3)%, что соответствует сечению реакции

$$\pi - p \rightarrow Y_{1385}^{*+} K^{\circ} \pi^{-},$$

$$\sigma(3) = (15,3 \pm 4,7) \text{ MKG}.$$

Исходя из распределений эффективных масс ($\Lambda^0 \pi^-$) комбинаций (рис.16) получаем для сечения реакции $\pi^- p \rightarrow Y_{1335}^* K^0 \pi^+$ (4) значение σ (4) = (11,4 + 3,8) мкб.

На рис. 1г приведено распределение эффективных масс $K^0 \pi^+$ -комбинаций. Анализ этого распределения показал, что сечение реакции с рождением K_{890}^{*+} - мезона $\pi^- p \rightarrow K_{890}^{*+} \Lambda^0 \pi^-$ (5) равно

$$\sigma(5) = (12,9^{+}+4,2)$$
 MKG.

Распределения эффективных масс для К⁰ п⁻-и п⁺п⁻-комбинаций (рис. 1в) не показывают каких-либо аномалий и хорошо описываются фазовыми кривыми. Верхняя граница сечения рождения *р*-мезона (6) соответствует

$$\rho(6) = (1,2+3,5) \text{ MKG } [\pi^- p \to \Lambda^0 \text{ K}^0 \rho^0].$$
(5)

Реакция $\pi^- p \rightarrow K^+ \pi^- \Lambda^0 \pi^0$ (2)

Анализ событий, принадлежащих реакции (2), указывает на сильное рождение резенанса K_{890}^{*0} в этом процессе. На рис. 2а приведено эк-спериментальное распределение эффективных масс $K^+\pi^-$ -комбинаций.

(3)

Сравнение экспериментальных данных с комбинацией брайт-вигнеровской и фазовых кривых дает величину сечения процесса $\pi^-_{p\to K} K^{*0}_{890} \Lambda^0 \pi^0$ (7), равную (34,5 + 5,9) мкб.

На рис. З приведена зависимость дифференциального сечения реакции (7) от квадрата четырехмерного переданного импульса $\Delta^2_{1(K\pi)_{890}} - \iota$. Видно, что для событий этой реакции, взятых из интервала эффективных масс $K^+\pi^-$ -комбинаций 0,83 $\leq M_{K^+\pi} \leq 0.93$ Гэв характерно распределение, при котором $|\iota| < 1.0 (\Gamma_{9B}/c)^2$, т.е. процесс образования K_{890}^{*0} носит периферический характер.

Анализ спектра эффективных масс $K^+\pi^0$ -комбинаций (рис. 26) дает величину $\sigma = (3,4 \pm 4,2)$ мкб для процесса $\pi^-_{p} \rightarrow K^{*+}_{890}\Lambda^0 \pi^-$ (8).

Рассмотрение каналов реакций с рождением гиперонных резонансов Y_{1385}^{*0} и Y_{1385}^{*-} в реакции (2) указывает на малые сечения образования этих резонансов, а именно: (5,0±3,5) мкб для процесса $\pi - p \rightarrow Y_{1385}^{*0}$, $K^+\pi^-$ (9) и (5,4±3,6) мкб для реакции $\pi - p \rightarrow Y_{1385}^{*-}$ $K^+\pi^0$ (10) (см. рис. 2 в, г).

Характерной особенностью рассмотренных выше процессов является периферическое рождение резонансов при этой энергии, как это наблюдалось для конечных состояний π р взаимодействий без странных частиц. Кроме этого, интересно отметить, что в реакциях (1) и (2), в основном, реализуются только низковозбужденные состояния гиперона (Y₁₃₈₅) и к -мезона (K^{*}₈₉₀) и нет указаний на рождение состояний с большим возбуждением.

На рис. 4 (а,б,в,г,д,е,ж) приведены данные по сечениям процессов образования Y_{1385}^* и K_{890}^* -резонансов в $\pi^- \rho$ взаимодействиях в зависимости от импульса налетающей частицы. Эти результаты взяты из ранее опубликованных работ ^{/10,11/} и из настоящей работы. Представленные на рис. 4 кривые получены с помощью метода наименьших квадратов. Из рис. 4 следует, что для всех указанных выше процессов (3+10) наблюдается характерная зависимость сечений от величины первичного импульса пионов: от порога реакции сечение быстро растет, затем достигает максимума в области импульсов от 3,2 до 3,3 Гэв/с и далее падает с увеличением импульса. Такое поведение сечений приводит к следующим выводам:

Для всех рассмотренных выше процессов уже при импульсе
 4,0 Гэв/с наблюдается уменьшение сечений образования Y^{*}₁₃₅₅ – и

К* -резонансов. Возможным объяснением такого поведения сечения может быть увеличение вклада каналов реакций с большим числом частиц в конечном состоянии или увеличение вклада реакций с большими возбуждениями бариона.

2) Для всех процессов (3+10) наблюдается максимум в ходе сечений в области первичных импульсов от 3,2 до 3,3 Гэв/с. Этот факт, если он подтвердится новыми данными в этом интервале импульсов^{X/}, может быть объяснен существованием нуклонной изобары с массой, равной 2650 Мэв. Известно, что в этой области масс наблюдалась нуклонная изобара N $_{\frac{1}{2}}$ (2650) с . Γ = 360 Мэв^{/12/}. Возможно, что наблюдаемый максимум в ходе сечений процессов (3+10) связан с образованием этой изобары.

Квазидвухчастичные процессы в реакциях (1) и (2)

Нами был оценен также вклад квазидвухчастичных процессов в реакциях (1) и (2). Оценки показали, что сечение реакции $\pi^- p \rightarrow \gamma_{1355}^{*-} K_{890}^{*+}$ (11) составляет (4,6±3,1) мкб, а процесс $\pi^- p \rightarrow (12)$ идет с сечением, равным (4,1±3,7) мкб.

Сравнение этих данных с результатами работ при других энергиях (см. рис. 6 а,б) указывает на то, что сечения квазидвухчастичных процессов падают с увеличением первичной энергии π^- -мезона.

 $\Lambda^0 K^{+0}$ – системы

Изучение спектра эффективных масс Л[°]К[°] – н Л[°]К⁺ -комбинаций в реакциях (1) и (2) показало, что характерной чертой этих спектров

^{X/}В пастоящее время пока нет данных о сечениях процессов с образованием Y^{*}₁₃₅₅ и К^{*}₈₉₀ в реакциях (1) и (2) в области первичных импульсов от 3,2 до 3,8 Гэв/с.

является концентрация событий в области эффективных масс 1650 +1910Мэв (рис. 7 а,б).

На рис. 7 в приведено суммарное распределение эффективных масс $\Lambda^0 K^0 - \mu \Lambda^0 K^+ - комбинаций, в котором наблюдаются пики в районе$ $масс <math>\approx 1700$ Мэв и ≈ 1850 Мэв. Для исключения влияния известных резонансов Y^*_{1385} и K^*_{890} , наблюдаемых в реакциях (1) и (2), эдесь же приведены спектры эффективных масс $\Lambda^0 K^{0}_{-}$ - комбинаций без событий, лежащих в области масс резонансов Y^*_{1395} и K^*_{890} (см. заштрихованные гистограммы). Можно видеть, что пик в области ≈ 1700 Мэв не связан с их рождением.

Предполагая, что наблюдаемое в эксперименте отклонение от фазовой кривой обусловлено рождением (АК) -резонанса с массой 1710Мэв. можно описать полученное экспериментальное распределение комбинацией фазового пространства и резонансом в брайт-вигнеровской форме с массой М=1710 Мэв и Г= 220 Мэв (χ² = 17, в = 21). Полученная аппроксимация дает для сечения рождения (ЛК) -резонанса в реакциях (1) и (2) величишу (32,2+7,7) мкб. Так как указанный эффект наблюдался в спектрах эффективных масс Λ^0 К 0 – и Λ^0 К $^+$ – комбинаций, изослин этого состояния равен 1/2 и его можно отождествить с одной из нуклонных изобар, например, N* (1710). В пользу такого объяснения можно привести следующие данные: в работе /13/, где рассматривается энергетический ход сечения реакции π^- р $\rightarrow \Lambda^0$ К 0 , наблюдался пик при Е $_{\pi} \approx 1070$ Мэв. Проведенный фазовый анализ этой реакции показал, что наибольший вклад в этот процесс вносит нуклонная изобара N* (1710)(S₁₁). Эти соображения и экспериментальное отклонение от фазовой кривой в этой области масс в спектрах Лк -комбинаций являются указанием на возможную моду распада этого возбужденного состояния нуклона, связанную с ЛК -системой. Оценки показали, что отношение моды распада

N* (1710) на (Λ K) –систему ко всем возможным неупругим модам распада составляет величину ≈ 1,1%.

На рис. 8 приведено распределение квадрата четырехмерного переданного импульса $\Delta^2_{p \to (\Lambda \kappa)} = -\iota$ для событий, лежащих в области эффективных масс $\Lambda \kappa$ – комбинаций 1600 $\leq M_{\Lambda \kappa} \leq$ 1790 Мэв.

Видно, что в основном события из этого интервала эффективных масс характеризуются переданными импульсами $\Delta^2 \leq$ 0,8 (Гэв/с²).

В ряде экспериментальных работ были указания на существование резонанса в ЛК -системе с массой ≈ 1700 Мэв и шириной 100+220 Мэв Так, в работе /15/ наблюдались резонансы в области 1700 и 1800 Мэв в спектре масс $\Lambda^0 \ {\rm K}^0$ и $\Lambda^0 \ {\rm K}^+$ - комбинаций. При изучении странных частиц в π^- р взаимодействиях при 7,91 Гэв/с авторы наблюдали резонанс в $\Lambda^0 \kappa^0$ и $\Lambda^0 \kappa^+$ -системах, который они связывали с нуклонной изобарой N* (1688). В^{/16 /} при импульсе *п*⁻ -мезона 6 Гэв/с также наблюдался $\Lambda^0 K^+$ -резонанс в З-частичных конечных состояниях с малыми переданными импульсами. Авторы интерпретировали его как нуклонную изобару N*(1688); однако не исключалась возможность интерпретации этого резонанса как N * (1710). В работе /17/ есть указания на резонанс в $(\Lambda^0 \kappa^{+0})$ -системах в π^+ р взаимодействиях при 8,0 Гэв/с. Авторы считают, что эти резонансы можно объяснить распадом нуклонной изобары N* (1755) с Γ = 220 Мэв. В статье /11/ при импульсе *п*-1,5н -4.2 Гэв/с нет указаний на существование нуклонных изобар, связанных с (АК) -системой.

Таким образом, в настоящее время вопрос о существовании (∧к) -резонанса с массой ≈ 1700 Мэв и его интерпретации не решен и требуются дальнейшие исследования.

В заключение авторы выражают признательность сотрудникам Лаборатории высоких энергий М.И.Подгорецкому, Ю.А.Трояну и Э.Г.Бубелеву за полезные обсуждения. Авторы также благодарят лаборантов группы за помощь в работе.

Литература

- 1. Б.П.Банник, Ким Хи Ин, А.А.Кузнецов и др. Препринт ОИЯИ, 1-3682, Дубна, 1968.
- М.Р.Атаян, К.Карамян, А.А.Кузнецов и др. Препринт ОИЯИ, 1-3779, Дубна, 1968.
- А.А.Кузнецов, Н.Н.Мельникова, Б.Чадраа и др. Препринт ОИЯИ, Р1-4049, Дубна, 1968.

- Б.П.Банник, А.А.Кузнецов, Н.Н.Мельникова и др. Препринт ОИЯИ, 1-3096, Дубна, 1966.
- О.В.Благонравова, З.М.Иванченко, А.Ф.Лукъянцев и др. Препринт ОИЯИ, 2005, Дубна, 1965.
- О.В.Благонравова, Л.И.Лепилова, А.Ф.Лукъянцев и др. Препринт ОИЯИ, 1959, Дубна, 1965.
- 7. З.М.Иванченко, А.Ф.Лукъянцев, В.И.Мороз и др. Препринт ОИЯИ, Р-2399, Дубна, 1967.
- 8. Б.П.Банник, Ким Хи Ин, А.А.Кузнецов и др. Препринт ОИЯИ, 2617, Дубна, 1966.
- В.Ф.Вишневский, Ду Юань-дай, Г.И.Копылов и др. Препринт ОИЯЙ, P-1489, Дубна, 1964; Б.А.Шахбазян. Вопросы физики элементарных частиц, т. IV, г.Ереван, 1964.
- 10. D.H.Miller, A.Z.Kovaes, R.L.Mcllwain et al. Phys. Rev., <u>140</u>, B.360 (1965).

11. O.I.Dahl, M.Hardy, R.I.Hess et al. Preprint UCRL - 16978, 1967.

12.N.Barash-Schmidt, A.Barbaro-Galtieri, L.R.Price et al. Review of Particle Properties. UCRL - 8030, 1968.

- 14. S.R.Deans, W.G.Holladay, I.E. Rush. XIV Intern. Conf. on High Energy Physics, p.144, Vienna, 1968;
 C.Lovelace, F.Wagner, J. Iliopoluos. IV Intern. Conf. on High Energy Physics, p. 469, Vienna, 1968.
- 15. Б.П.Банник, Э.Г.Бубелев, Ким Хи Ин и др. XII Международная конференция по физике высоких энергий, стр. 682, Дубна, 1964.
- R.Ehrlich, W.Selove, H.Yuta. Phys. Rev., 152, 1194, 1966;
 D.I.Crenell, K.W.Lai, J.M.Scarr et al. Phys. Rev. Lett., <u>19</u>, 1212 (1967).
- 17. M.Alderholz, I.Bartsch, R.Schulte et al. XIV Intern. Conf. on High Energy Physics, p.144, Vienna, 1968.

Рукопись поступила в издательский отдел 26 февраля 1969 года.

^{13.0.}Goussu, M.Sene, B.Chidine et al. Nuovo Cim., 42, 606 (1966).

Таблица

Реакция	N набл.	N поправкой
π⁺π⁻∧° κ°	198	297
K⁺ <i>\</i> T⁻∧° <i>\</i> T°	102	154
Неразделенные π+п-л•(к°) к+п-л•(п°)	35	53

Рис. 3. Распределение дифференциального сечения реакции π⁻ p→ K^{*0}₈₉₀ Λ⁰π⁰ в зависимости от квадрата четырех мерного переданного импульса Δ²_{1K^{*}₈₉₀} (в произвольных единицах).

Puc. 4. Зависимость сечений рождения резонансов с участием странных частиц от первичного импульса для процессов: a) $\pi^- p \rightarrow K^{*0}_{s90} \Lambda^0 \pi^0$; 6) $\pi^- p \rightarrow K^{*+}_{890} \Lambda^0 \pi^-$; b) $\pi^- p \rightarrow Y^{*0}_{1385} K^+ \pi^-$; r) $\pi^- p \rightarrow Y^{*0}_{1385} K^+ \pi^0$;

Рис. 4. Зависимость сечений рождения резонансов с участием странных частиц от первичного импульса для процессов: $\mu_{1,385} \chi^{0} \pi^{-1}$; e) $\pi^{-1} \mu \to \chi^{*+} \chi^{0} \pi^{-1}$; $\chi_{1,385} \chi^{0} \pi^{-1}$.

Рис. 6. Распределение эффективных масс $\Lambda^{\circ} K^{\circ}$ -комбинаций: (в) суммарное распределение $\Lambda^{\circ} K^{\circ}$ – и $\Lambda^{\circ} K^{+}$ – комбинаций; кривая – комбинация 12,8% резонанса N* (1710) и 87,2% фона. Заштрихованные гистограммы распределения $\Lambda^{\circ} K^{+}_{+}$ – комбинаций без событий, находящихся в области резонансов K^{*}_{890} и Y^{*}_{1385} .

20

