

P1 - 4227

11/11-69

В.И.Комаров, Г.Е.Косарев, О.В.Савченко

КВАЗИУПРУГОЕ РАССЕЯНИЕ ПРОТОНОВ С ЭНЕРГИЕЙ 665 МЭВ **Q** - ЧАСТИЧНЫМИ АССОЦИАЦИЯМИ В ЛЕГКИХ ЯДРАХ

1968

P1 - 4227

КВАЗИУПРУГОЕ РАССЕЯНИЕ ПРОТОНОВ С ЭНЕРГИЕЙ 665 МЭВ **Q** -ЧАСТИЧНЫМИ АССОЦИАЦИЯМИ В ЛЕГКИХ ЯДРАХ

1. Введение. Цель эксперимента и выбор основных условий

ассоциирования нуклонов в ядре является одной из цент-Проблема ральных проблем физики ядра. Реакции квазиупругого рассеяния (КВУР) быстрых протонов на кластерах дают прямую информацию об основных чертах и деталях ассоциирования, поскольку оно является непосредственной причиной, вызывающей реакцию. Количественный подход к реакциям КВУР, развитый в работах/1-3/, где для описания ассоциирования использовалась оболочечная модель, позволил вычислять такие существенные характеристики ассоциирования, как соотношение вероятностей образования различных кластеров, характер их движения в ядрах и спектры возбуждения остаточных ядер. Однако экспериментальные данные, позволяющие проверить правильность предлагаемой модели и определить характеристики ассоциирования, весьма неполны, либо вовсе отсутствуют. В особой степени это относится к наиболее существенному виду нуклонных ассоциаций - а -кластерам. Основное требование, предъявляемое к опытам по КВУР, состоит в том, чтобы энергия падающих и выбиваемых частиц была достаточно велика порядка нескольких сот Мэв. Известные экспериментальные работы/4,5/ по А, Z (р, ра) А-4, Z-2 выполнены при сравнительно невыреакциям типа сокой энергии (Тр = 150 Мэв), так что вторичные эффекты взаимодействия в ядерном веществе проявлялись весьма значительно. Реакция (р, ра) на легких ядрах при энергии Тр = 660 Мэв исследовалась в работе /6/ в условиях малой передачи импульса выбиваемым а -частицам (Т = 10--20 Мэв).

Цель данной работы состояла в измерении сечения квазиупругого рассеяния протонов с энергией 665 Мэв на а -частичных ассоциациях в легких ядрах при максимальной передаче импульса а -ассоциациями для оценки полного эффективного числа таких ассоциаций в условиях минимального влияния вторичных процессов.

Определение эффективного числа ассоциаций состоит в сравнении сечения выбивания таких ассоциаций из ядра с сечением упругого рассеяния на соответствующем свободном ядре (на ядре ⁴ Не при исследовании α -кластеров). Сечение свободного р ⁴ Не рассеяния на угол 169⁰ с.ц.и. было измерено нами ранее в работе^{/7/}. При этом угол вылета ядер ⁴ Не в лабораторной системе равен 5,4⁰. Поэтому в настоящей работе высокоэнергетическая часть импульсного спектра выбиваемых ядер ⁴ Не измерялась под тем же углом 5,4⁰ л.с. В соответствии с кинематикой свободного рассеяния ядра ⁴ Не, образующиеся в реакции КВУР, должны иметь под этим углом энергию, близкую к $T_{\alpha} = 467$ Мэв, (P = 1923 Мэв/с), превышающую энергию ^{α} -частиц испарительного и каскадного процессов. При малой передаче импульса^{/6/} ядра ⁴ Не из КВУР сопровождаются интенсивным фоном α -частиц указанных процессов.

Измерение выхода ⁴Не с такой большой энергией представляет интерес и при изучении спектров вторичных частиц, возникающих при взаимодействии быстрых протонов с ядрами, поскольку измеренная часть спектра ⁴Не при энергии 660 Мэвограничивается областью Т_а≤ 100 Мэв^{/8/}.

Выбор ядер (⁶Li, ⁹Be, ¹²С) был обусловлен тем, что ⁶Li представляет собой ядро с ярко выраженной *а*-d структурой, а эффективное число *а* -ассоциаций для ⁹Be и ¹²С рассчитано в работах/2,3/.

2. Постановка эксперимента и условия измерений

Постановка эксперимента и условия измерений были близки к использованным нами ранее в эксперименте по упругому р ⁴Не рассеянию назап/7/.

Рис. 1. Общая схема эксперимента и расположения аппаратуры. СЦ-синхроциклотрон; ОН – отклоняющие насадки; р – выведенный протонный лучок; МЛ и МФЛ – магнитные линзы; М – мишень; МК – мониторирующая камера; К – коллиматоры; ОМ – отклоняющий магнит; ВТ – вакуумный тракт; С₁ – С₄ – сцинтилляционные счётчики.

Мишени устанавливались на выведенном протонном пучке синхрониклотрона (рис. 1), имевшем в плоскости мишени сечение с размером 1,5см по горизонтали, 4,0 см по вертикали и угловой разброс около 0.5°. Система щелевых коллиматоров магнитного спектрометра выделяла частицы. вылетающие из мишени под углом 5,4° к направлению протонного пучка в угловом интервале 0.1°. Отобранные по импульсу частицы транспортировались фокусирующим каналом к сцинтилляционным счётчикам. В этих условиях обеспечивалось разрешение по импульсу (ширина на полувысоте) 6 + 6,5% и телесный угол, достаточный для регистрации процесса, идущего с сечением порядка 10-31 см² стер-1. Идентификация ядер 4 Не в потоке частиц с определенным эффективным импульсом осуществлялась по времени пролета на базе 14,5 м между счётчиками С С, удельным потерям энергии в сцинтилляторе С, полной потере энергии при остановке +He в сцинтилляторе счётчика С и пробегу. Размеры сцинтилляторов С1 - 12x12x0,2 см³, С -12x12x1 см³, С - толщина по оси пучка 10 см и диаметр 13 см, С - 40х40х1 см³. Для выделения частиц определенной массы, в принципе, достаточно использовать 3 параметра отбора, однако использование 2 дополнительных параметров позволяет осуществить надежный отбор ядер ⁴ Не из потока протонов и дейтронов с интенсивностью, на несколько порядков превышающей интенсивность потока ⁴ He

Блок-схема электроники (рис. 2) в режиме амплитудного анализа позволяла измерять амплитудный спектр таких импульсов счётчика C_3 , которые сопровождались импульсом в счётчике C_1 с опережением по времени, равным времени пролета ⁴ Не, импульсом в C_2 с амплитудой, превышающей определенный порог дискриминации, и отсутствием импульса в C_4 . Режим временного анализа, при котором на многоканальном анализаторе записывается времяпролетный спектр частиц пучка, использовался в данной работе для вспомогательных измерений. На рис. 3 приведены типичные характеристики идентификации ⁴ Не. При надлежащем выборе времени пролета и порога дискриминации по dE/dx амплитудные спектры импульсов C_3 обнаруживали чёткий пик, обусловленный регистрацией ⁴ Не .

Рис. 2. Блок-схема электронной аппаратуры. Р - разветвитель; СС1 быстрая схема совладений; Д - интегральный дискриминатор; MC2 - вторичная схема совладений; ЛВ - линейные ворота; ПС - пересчётная схема; t → А - время-амплитудный конвертор; AA - многоканальный амплитудный анализатор. Режим амплитудного (временного) анализа: K₁,K₂ - замкнут (разомкнут), K₂ разомкнут (замкнут).

Рис. 3. Счётные характеристики аппаратуры при идентификации ⁴ Не. а. амплитудный спектр импульсов С при регистрации дейтронов; в. амплитудный спектр импульсов С при регистрации дейтронов; иии по d E/dx ($U_{dE/d=5}$), пик с \overline{N}_k 27 обусловлен регистрацией ⁴ Не; с. зависимость счёта п с выхода вторичной схемы совпадений и счёта п в пике ⁴ Не амплитудных спектров С от порога дискриминации импульсов С ; д. зависимость счёта п 4_{Не} от задержки в канале С соответствующая кривая для регистрации дейтронов имеет среднее значение t_{eff} = 75 нсек.

œ

3. Процедура измерений и обработки

Выход ⁴Не в зависимости от импульса в интервале <u>+</u>10% относительно значения p = 1923 Мэв/с измерялся из мишеней Li H (0,42 г.см⁻²; 90,5% ⁶Li), Ве (0,85 г.см⁻²) и CH₂ (1,1 г.см⁻²). Калибровка шкалы импульсов и дифференциального сечения выбивания ⁴ Не осуществлялась, как и в^{/7/}, сравнением выхода ⁴ Не с выходом дейтронов из реакции $p + p \rightarrow d + \pi^+$, идущей на ядрах водорода в мишенях Li H и CH₂. Фон при удалении мишеней составлял 2 – 15% счёта с мишенью. В полученные значения выхода ⁴ Не была введена поправка \approx 6%, учитывающая ядерное и кулоновское рассеяние ⁴ Не и дейтронов калибровочной реакции в веществе мишени, слое воздуха до входа в вакуумный тракт и счётчиках.

Приведенные на рис. 4 спектры показывают, что при взаимодействии протонов с легкими ядрами наблюдался выход ядер ⁴ Не с импульсом

≈ 1920 Мэв/с и сечением 3-5·10⁻³³см² стер.⁻¹ (Мэв/с)⁻¹. (Кроме указанных на рисунке статистических ошибок абсолютные значения точек имеют общую для всех точек 18%-ную неопределенность, возникающую при калибровке и введении поправок). В спектре ⁴ Не, выбиваемого из ⁶ Li, обнаруживается пик, который можно интерпретировать как результат квазиупругого рассеяния протонов на ⁴ Не – ассоциации в ядре ⁶Li. Ширина наблюдаемого пика составляет ≈ 6% и, в основном, определяется экспериментальным разрешением.

Характерной особенностью наблюдаемых спектров является быстрое увеличение выхода ⁴ Не уже при 10%-ном уменьшении импульса относительно среднего значения для КВУР. С увеличением атомного номера ядра вклад этой части спектра в выход быстрых ядер ⁴ Не возрастает, так что уже на ядрах ⁹ Ве пик КВУР начинает сливаться с непрерывной частью спектра, а на ядре ¹² С при имеющемся разрешении КВУР проявляется лишь в неравномерности уменьшения вых ода ⁴ Не с ростом импульса. Можно думать, что основным механизмом образования ядер

⁴ Не в области 1700-1800 Мэв/с является процесс рождения мезонов на нуклонных ассоциациях.

Рис. 4. Выход быстрых ядер ⁴ Не из ⁶Li, ⁹Be, ¹²С под углом 5,4⁰ к пучку протонов с энергией 665 Мэв. Стрелкой указан импульс ядер ⁴Не при упругом р ⁴Не рассеянии.

В самом деле, импульс ядер ⁴ Не, возникающих в реакции р ⁴ Не p^{4} Не π^{0} , в наших условиях простирается до значения 1790 Мэв/с, а в реакциях Р ³ Не \rightarrow ⁴ Не π^{+} , р ³ Не \rightarrow ⁴ Не π^{0} составляет 1600 Мэв/с. В то же время выход ⁴ Не из двух последних реакций под углом 6⁰л.с. по данным работы⁹ определяется сечением (3,3 ± 1,3).10-30 см²стер⁻¹и, следовательно, на порядок превышает выход ⁴ Не при упругом р ⁴ Не рассеянии под тем же углом.

Для выделения квазиупругого рассеяния в ⁶ Li мы нормировали кривую нормального распределения по экспериментальным точкам при p > 1900 Мэв/с, где вклад непрерывной части спектра пренебрежимо мал. Среднее значение распределения принималось, с учётом энергии связи

⁴ Не в ⁶ Li, равным 1921 Мэв/с. Дисперсия и нормировка распределения определялись методом наименьших квадратов. Полученное таким образом значение

$$\frac{d\sigma}{d\Omega} [{}^{6}\text{Li}(p,p {}^{4}\text{He})d] = (3,6\pm0,7) \cdot 10^{-31} \text{ cm}^{2} \cdot \text{crep.}^{-1}$$

Аналогичная процедура при обработке спектра ⁴ Не из ⁹Ве дает

$$\frac{d\sigma}{d\Omega} [{}^{9}Be(p,p{}^{4}He) {}^{5}He] = (5,4\pm1,2) \cdot 10^{-31} \text{ cm}^{2} \cdot \text{ crep.}^{-1}$$

Приведенная ошибка учитывает возможный вклад (до 30%) непрерывной части спектра в выход ⁴ Не при р > 1900 Мэв/с и неопределенность в среднем значении пика квазиупругого рассеяния (0,8%), обусловленную тем, что спектр возбуждения остаточного ядра неизвестен. Данные по выбиванию ⁴ Не из ¹²С позволяют оценить только верхнюю границу сечения. Для этого предполагалось, что спектр возбуждения остаточного ядра соответствует расчётам^{/2/} и весь выход ⁴ Не при р > 1900 Мэв/с обусловлен КВУР. Тогда

$$\frac{d\sigma}{d\Omega} [{}^{12}C(p,p {}^{4}He) {}^{8}Be] \leq (9,1+1,5) \cdot 10^{-31} \text{ cm}^2 \cdot \text{crep.}^{-1}$$

Если предположить, что образование ⁴ Не может сопровождаться полным развалом остаточного ядра и учесть допустимую ширину пика квазиупругого рассеяния в наших условиях, то эта граница отодвинется до з начения (18,2<u>+</u>3,0)·10-31 см² стер ⁻¹. Это значение можно рассматривать как верхнюю оценку сечения выбивания ⁴ Не из ¹² С , включая конечные состояния с разрушением s -оболочки.

4. Результаты и обсуждение

Отношения полученных сечений КВУР к сечению упругого р He⁴ рассеяния/7/ $\frac{d\sigma}{d\Omega}$ ($\theta_{He} = 5,4^{\circ}$)=(4,6±1,2)·10⁻³¹ cm² crep⁻¹ позволяют оценить полные эффективные числа α -кластеров/3/ (см. табл. 1). Измеряемое в условиях эксперимента сечение квазиупругого рассеяния представляет собой результат усреднения сечения упругого рассеяния на движущейся в ядре α -ассоциации по малому интервалу энергии и передаваемого импульса. Средние эначения импульса α -кластеров в ⁶ Li, ⁹ Be и¹² С, которые могут быть найдены по результатам работ^{/5,14/}, составляют приблизительно 40,50 и 150 Мэв/с соответственно, в то время как импульс налетающего протона равен 1300 Мэв/с и выбиваемого ядра ⁴ He -1920 Мэв/с. Поэтому даже для ядра ¹²С такое усреднение не может приводить к изменению значения более чем на величину порядка 10%.

При нахождении отношений значительная часть факторов, дающих вклад в ошибку абсолютных сечений (ошибка сечения калибровочной реакции, рассеяние в счётчиках, эффективность счётчиков и т.п.), исключается. Значение N_a для ⁶ Li оказывается близким к единице, что представляется естественным, так как структура этого ядра хорошо описывается а-d моделью с малым перекрыванием волновых функций ассоциаций/10/. Поскольку передача ядру импульса q = 9,5 ферми⁻¹ определяется поведением волновой функции ядра на расстояниях $\leq \frac{h}{q} \approx 0.1$ ферми/11/, этот результат указывает на близость волновой функции ядра ⁴ Не и *а*-кластера в ядре ⁶ Li на малых расстояниях.

Таблица 1

Данные об эфективном числе а -ассоциаций в легких ядрах

N N) LIT	, ^N a			Реакция	Энергия налетающих	Информация получена в работе
	^ Li	9 Be	¹² C		частиц Мэв	
1.	0,8 ± 0,2	1,1 <u>+</u> 0,3	<1,9 <u>+</u> 0,4 (< 3,8 <u>+</u> 0,9)	(p,pa)	665	данная работа
2.	0,2 ^{x/}	0,48	1,3	"	660	В. Кузьмин и др.
3.	-	-	$0,30 \pm 0,23 \\ 0,22$	"	150	A. James et al. 14/
4.	0,2	-	-	"	150	C.Ruhla et al./5/
5.	-	-	$5,3 \pm 1,7 \\3,9 \pm 2,9 \qquad 3,9 \pm 1,2 \\1,7 \pm 0,9$	(a,2a)	915	G.Igo et al./12/
6.	-	1,38	2,37	(p , pa)	теор, работа	В.Балашов и др. /2/
7.	-	-	7,22	"	теор, работа	П.Береги и др. ^{/3/}

x/ Использовалась естественная смесь изотопов лития.

Экспериментальное значение N_а для ⁹ Ве в пределах 25% точности совпадает с теоретическим значением^{/2/}, не учитывающим КВУР с разрушением s -оболочки.

Верхняя граница N_{α} для 12С оказывается близкой к значению 2,37, рассчитанному в/2/, но заметно меньше значения 7,22, полученного в работе/3/, где были учтены все возможные конфигурации ядра, дающие вклад в α -ассоциирование. Следует заметить, что полученное в эксперименте/12/ значение $N_{d} = 6,9$ для реакции 16 O (p,pd) 14 N при аналогичной постановке опыта и энергии $T_{p} = 1$ Гэв также оказывается меньше значения $N_{d} = 13,7$, полученного в/3/.

Измеренные нами значения N_{α} заметно больше, чем N_{α} , полученные в экспериментах при $T_{p} = 150 \text{ Мэв}/4,5/.$ Это связано, по-видимому, с сильным поглощением, существенно снижающим значение N_{α} , измеряемое при низких энергиях, что отмечалось и ранее (например, в/3/). Заметное влияние взаимодействия в конечном состоянии наблюдается и в результатах измерений/6/, выполненных при энергии $T_{p} = 660 \text{ Мэв},$ но при передаче α -ассоциациям импульса около 2 ферми⁻¹. Аналогичный эффект наблюдался в/13/, где эффективное число N_{α} в ¹²С, определяемое в реакции (α , 2 α) при T_{α} = 915 Мэв,имело тенденцию к уменьшению при уменьшении передаваемого α -кластеру импульса.

Таким образом, совокупность имеющихся данных по эффективным числам *a* -ассоциаций указывает на необходимость проводить точные измерение N_a при высокой энергии налетающих протонов и большой передаче импульса. Вместе с тем то обстоятельство, что значение N_a, измеренное при энергии T_p = 660 - 665 М эв в диапазоне энергии выбиваемых

α -частиц от 10 до 470 Мэв, различается не более чем в 2-4 раза, хотя абсолютные сечения упругого рассеяния различаются при этом на 4 порядка, качественно подтверждает правильность основных представлений о квазиупругом рассеянии быстрых протонов на внутриядерных ассоциациях в широком диапазоне энергий.

5. Заключение

 Измерен выход ядер ⁴ не с энергией Т ≈ 470 Мэв, близкой а
с энергии ⁴ не в свободном р ⁴ не рассеянии, при соударении протонов с Т = 665 Мэв с ядрами ⁶ Li, ⁹Be, ¹²C.

2. Обнаружен пик в импульсном спектре ⁴ Не, обусловленный квазиупругим рассеянием протонов *а* -ассоциациями легких ядер при передаче таким ассоциациям импульса 9,5 ферми⁻¹.

3. Оценены эффективные числа N_a *a* -ассоциаций в ядрах ⁶ Li, ⁹Ве и верхняя граница N_a в ядре ¹²С.

4. Полученные результаты подтверждают правильность основных представлений о квазиупругом выбивании высокоэнергетичных ядер ⁴ Не быстрыми протонами из легких ядер и, в частности, указывают на близость внутренней структуры *а* -ассоциаций и свободного ядра ⁴ Не .

В заключение авторы пользуются случаем поблагодарить В.В.Балашова, Д.И.Блохинцева, Л.М.Сороко за интерес к работе и полезные обсуждения и Ю.К.Акимова, Ю.Г.Будяшова, В.Г.Зинова и А.Н.Синаева за содействие, оказанное нам при подготовке быстрой электроники, использованной в работе.

Литература

- 1. В.В.Балашов, В.Г.Неудачин, Ю.Ф.Смирнов, Н.П.Юдин, ЖЭТФ, 37, 1387 (1959).
- 2. В.В.Балашов, А.Н.Бояркина, И.Роттер, Nucl. Phys. 59, 417 (1964).
- 3. П.Береги, Н.С.Зеленская, В.Г.Неудачин, Ю.Ф.Смирнов, Nucl. Phys. <u>66</u>-513 (1965).
- 4. A.N.James, H.G.Pugh, Nucl. Phys. <u>42</u>, 441 (1963).
- 5. C.Ruhla, M.Riou et al. Phys. Lett., 6, 282 (1963).
- А.П.Жданов, В.Н.Кузьмин, Р.М.Яковлев, Изв. АН СССР, с.ф. 29, 239 (1965), ЯФ, 1, 625 (1965); В.Н.Кузьмин, Р.М.Яковлев, Изв. АН СССР с.ф. <u>29</u>, 1237 (1965).
- 7. В.И.Комаров, О.В. Савченко, Препринт ОИЯИ Р1-3720, Дубна, 1968.

- 8. Е.Л.Григорьев, Л.П.Соловьева, ЖЭТФ <u>31</u>, 932 (1956), В.И.Остроумов, Н.А.Перфилов, Р.А.Филов, ЖЭТФ <u>39</u>, 105 (1960).
- 9. Ю.К.Акимов, О.В. Савченко, Л.М.Сороко, ЖЭТФ <u>41</u>, 708, (1961).
- Ю.А.Кудеяров, В.Г.Неудачин, С.Г.Серебряков, Ю.Ф.Смирнов, ЯФ <u>6</u>, 1203 (1967); Ю.А.Кудеяров, Р.А.Эрамжян, Препринт ОИЯИ Р4-4016 (1968).
- 11. Д.И.Блохинцев, ЖЭТФ, <u>33</u>, 1295 (1957). Д.И.Блохинцев, К.А.Токтаров. Препринт ОИЯИ Р4-4018, Дубна, 1968.
- 12. J.K.Sutter et al., Phys. Rev. Lett. <u>19</u>, 1189 (1967).
- 13. G.Igo, L.F.Hansen, T.J.Gooding, Phys. Rev. <u>131</u>, 337 (1963).
- 14. A.Samman, P.Cüer, J. Phys. Rad., <u>19</u>, 13 (1960).

Рукопись поступила в издательский отдел 27 декабря 1968 года.