

P1 - 4155

Р.Я.Зулькарнеев, В.С.Киселев, В.С.Надеждин, В.И.Сатаров

ФАЗОВЫЙ АНАЛИЗ УПРУГОГО РР-РАССЕЯНИЯ ПРИ ЭНЕРГИИ 635 МЭВ И СЕЧЕНИЯ НЕУПРУГИХ ВЗАИМОДЕЙСТВИЙ

Р.Я.Зулькарнеев, В.С.Киселев, В.С.Надеждин, В.И.Сатаров

7614/2 mp.

# ФАЗОВЫЙ АНАЛИЗ УПРУГОГО РР-РАССЕЯНИЯ ПРИ ЭНЕРГИИ 635 МЭВ И СЕЧЕНИЯ НЕУПРУГИХ ВЗАИМОДЕЙСТВИЙ



Известно, что фазовый анализ (ф.а.) является одним из таких методов обработки экспериментальных данных, который представляет результаты опыта в виде совокупности феноменологически подбираемых параметров. Анализ считается выполненным, если фазовые сдвиги найдены так, что ни изменение количества анализируемой информации, ни изменение исходных посылок анализа не меняют единственности и характера фазового решения.

В некоторых случаях (например, при энергиях выше порога рождения мезонов, где число искомых параметров велико) трудно сделать однозначный анализ сразу и задачу приходится решать в несколько этапов по мере накопления экспериментальных данных.

Особенно четко отмеченная особенность прослеживается на примере развития анализа РР - рассеяния в области 630-660 Мэв.

Впервые анализ в этой области выполнялся для синглетных состояний pp-системы на основе данных о сечении и коэффициентах корреляции и деполяризации /1/. Затем проводился более полный анализ двумя группами авторов /2,3/, который привел к нескольким примерно равновероятным решениям. В дальнейшем с появлением информации об угловой зависимости параметров <sup>R</sup> и А производилось уточнение ф.а., что привело к уменьшению числа решений /4/.

Однако значительная часть анализировавшихся экспериментальных данных оказалась неверной из-за ошибки в определении поляризации пуч-

ка и ее пришлось перенормировать <sup>/5/</sup>, что привело к необходимости изменить значения параметров <sup>D</sup> лл и <sup>C</sup> лл .

После исправления и уточнения результатов в работе  $^{/5/}$  проводилось лишь уточнение полученного ранее фазового решения. При этом авторы  $^{/5/}$  не учли того чрезвычайно важного обстоятельства. что новая совокупность экспериментальных данных могла существенно деформировать прежнюю поверхность функционала  $\chi^2$ , образовав на ней дополнительные минимумы. Такие минимумы могут соответствовать неизвестным ранее решениям. Поэтому лишь убедившись в их отсутствии, можно заниматься какими-либо уточнениями уже известных решений.

Исходя из этого, мы провели поиск новых решений со случайных начальных значений фазовых сдвигов на основе тщательно отобранного современного экспериментального материала при различных предположениях о характере мезонообразования. Некоторые предварительные результаты этого ф.а. опубликованы в <sup>/6/</sup>. Результаты данной работы следует рассматривать как один из этапов анализа, сделанного в определенных предположениях, которые могут изменяться с изменением наших знаний о характере взаимодействия нуклонов.

## Выбор экспериментального материала

В настоящей работе использовались данные, полученные, в основном, для узкой энергетической области 635-650 Мэв. Выборка материала проводилась следующим образом. При рассмотрении дифференциальных сечений предпочтение отдавалось результатам, полученным с помощью камерной методики при 650 ± 15 Мэв /7/, достоверность которых окупает относительную бедность статистики. Заметим,что эти результаты с точностью до ошибок измерений совпадают с данными по значениям сечений, интерполированными к энергии 635 Мэв. Результаты работы /8/ не анализировались по той причине, что их высокая статистическая точность не подкреплена тщательным разбором возможных систематических ошибок.

Величины поляризации, найденные в <sup>/5/</sup> для энергии 667 Мэв, не принимались во внимание вследствие того, что пересчет этих результатов

к энергии 635 Мэв требует слишком детальных сведений об энергетической зависимости поляризации в широкой области углов и энергий. Поэтому результаты <sup>/5/</sup> заменены более точными данными работы <sup>/6/</sup>, выполненной при 635 Мэв.

Нами использовались также исправленные с учетом результатов  $^{/5,6/}$ величины D<sub>nn</sub> ( $\theta$ ) и результаты измерения параметра R( $\theta$ ), относящиеся к энергии 635 Мэв-

Выбор параметра  $C_{nn}(\theta)$  сопряжен с некоторыми трудностями. Имеются измерения угловой зависимости этого параметра на энергиях 575, 640 и 683 Мэв /9,1,10/. Сопоставление этих результатов дает основание предположить, что зависимость  $C_{nn}(\theta)$  от энергии немонотонна. Более определенные высказывания делать пока трудно, поскольку статистически результаты /9,1,10/ различаются незначительно. Поэтому, учитывая тот факт, что информация об угловых зависимостях  $C_{nn}(\theta)$  при энергиях 575 и 683 Мэв более полна, чем при энергии 640 Мэв, мы использовали линейно интерполированные к 635 Мэв данные об угловой зависимости  $C_{nn}(\theta)$  /9,10/. Использовались также значения  $C_{\rm Kp}(90^{\circ})^{/11/}$ и  $\sigma_{\rm tot}$ , найденные в /12/ для энергии 635 Мэв.

#### Метод и результаты анализа

Фазовые сдвиги находились способом, описанным ранее в работах<sup>/13,11/</sup>, с учетом релятивистских эффектов. Параметризация <sup>S</sup> матриц и связь полного сечения с амплитудой под 0° осуществлена согласно <sup>/2/</sup>.

Поиск минимумов  $\chi^2$  велся со случайных значений фазовых сдвигов в интервале  $\chi^2$  от  $\bar{\chi}^2$  до  $1.5 \,\bar{\chi}^2$ . Вещественные части фазовых сдвигов, соответствующие  $\ell_{max} \geq 4.5$ , вычислялись в полюсном однопионном приближении /15/. Для большей общности рассмотрения было проанализировано несколько вариантов, различавшихся величиной  $\ell_{max}$  и подходом к учету мезонообразования при соударении двух протонов. При этом, однако, на основании анализов, проведенных в /16,3/, всегда предполагалось, что рождение пионов происходит из  ${}^{3}P_{0.1.2}$ ,  ${}^{1}D_{2}$ и  ${}^{3}F_{2.8}$  состояний рр - системы. Для облегчения поисков мнимая

часть параметра смешивания  $\epsilon_2 = \epsilon_2^{Re} + i\epsilon_2^{Im}$  полагалась нами равной нулю, а рождением пионов из  ${}^{1}S_0$  - состояния пренебрегалось.

В первом варианте анализа мнимые части всех фазовых сдвигов в состояниях с  $\ell = 1,2,3$  находились феноменологически. По способу учета разрешенных неупругих каналов этот анализ выполнен с минимальным произволом и является наиболее общим. Результаты приведены в табл. 1.

В следующем варианте мезонообразование учитывалось согласно Хошизаки-Мачида <sup>/3/</sup>. В этом случае, оперируя с коэффициентами поглощения, усредненными по полному моменту Ј , можно сократить число параметров, необходимых для описания переходов с излучением пиона. Это рассмотрение, на наш взгляд, менее общее, чем предыдущее. Результаты этого анализа, приведенные в таблице 2, получены без привлечения данных о парциальных сечениях неупругих процессов  $pp \rightarrow \pi^+ + n + p$ ;  $\pi^+$ + d ,  $\pi^\circ + p + p$  . Анализ с учетом этих данных, выполненный способом Хошизаки-Мачида <sup>/3/</sup>. при прочих равных условиях позволил заметно уменьшить статистическую ошибку определения фазовых сдвигов

(см. таблицу 3).

Наконец, в последнем варианте сделана попытка учесть образование мезонов из высших состояний начальной рр - системы в приближении одномезонного обмена (см. таблицу 4). При этом мнимые части фазовых сдвигов в <sup>3</sup>F<sub>2</sub> и <sup>3</sup>F<sub>3</sub> состояниях вычислялись и фиксировались, а величины  $\delta^{\text{Im}}$  (<sup>3</sup>P<sub>0,1,2</sub>) и  $\delta^{\text{Im}}$  (<sup>1</sup>D<sub>2</sub>) варьировались<sup>х</sup>). Расчет значений  $\delta^{\text{Im}}$  (<sup>3</sup>F<sub>2</sub>) и  $\delta^{\text{Im}}$  (<sup>3</sup>F<sub>3</sub>) выполнялся следую-

Расчет значении о (г<sub>2</sub>) и о (г<sub>3</sub>) выполнялся следующим образом. Известно, что сечение поглощения в состоянии, характеризуемом квантовыми числами Ј, ℓ, дается выражением /17/

$$\sigma_{J,\ell} = \frac{\pi}{2k^2} (2J+1)(1-|S_{J,\ell}|^2), \qquad (1)$$

в котором k = волновой вектор падающего нуклона в с.ц.м.;  $|S_{1,\ell}| = e$ ;  $\delta^{Im'}(J,\ell) = Im (J,\ell) = Im$ 

х) В случае последовательного выполнения этой процедуры для всех значений Ј такой анализ по аналогии с анализом, проведенным в /15/, можво было бы назвать дважды модифицированным.

мнимая часть фазового сдвига в состоянии (J, $\ell$ ), параметризованная согласно  $^{/2/}$ . Применение к случаям с  $\ell$  = 3 , J = 2 и 3 дает

$$\sigma_{3_{F_{2}}} = \frac{5}{2k^{2}} \left[ 1 - e^{-4\delta^{1m}(^{3}F_{2})} \right] = \sigma_{3_{F_{2}}}^{\pi^{\circ}} + \sigma_{3_{F_{2}}}^{\pi^{+}d} + \sigma_{3_{F_{2}}}^{\pi^{+}np}$$
(2)

$$\sigma_{3_{F_{3}}} = \frac{7}{2k^{2}} \left[ 1 - e^{-4\delta^{1m} ({}^{3}F_{3})} \right] = \sigma_{3F_{3}}^{\pi^{0}} + \sigma_{3F_{3}}^{\pi^{+}d} + \sigma_{3F_{3}}^{\pi^{+}np}$$
(3)

Здесь  $\sigma_{3_{\rm F}}^{\pi^0}$ ,  $\sigma_{3_{\rm F}}^{\pi^+ d}$  и  $\sigma_{3_{\rm F}}^{\pi^+ np}$  - сечения мезонообразования в F - состояниях для каналов pp -  $\pi^{0}$  pp ; pp -  $\pi^+ d$  и pp +  $\pi^+ np$ , соответственно. В соответствии с /18/ в рассматриваемой нами области энергий (= 635 Мэв) можно пренебречь мезонообразованием в  ${}^{3_{\rm F}}$  - состояниях начальной pp - системы в реакциях pp - pp  $\pi^{0}$  и pp +  $\pi^+ d$ . Отсюда с точностью до ошибок эксперимента имеем

$$\delta^{\text{Im}} \begin{pmatrix} {}^{3}F_{2} \end{pmatrix} = -\frac{1}{4} \log \left[ 1 - \frac{2\sigma \, {}^{3}F_{2}}{5} \right]$$
(4)

$$\delta^{\text{Im}} \left( {}^{3}F_{3} \right) = -\frac{1}{4} \log \left[ 1 - \frac{2\sigma^{3}_{F_{3}}}{7} \right]$$
(5)

Недавно группой итальянских авторов /19/ выполнены расчеты реакции pp  $\rightarrow \pi^{+}np$  в области энергий до 1,4 Гэв для различных спиновых состояний начальной pp - системы на основе рассмотрения одномезонной диаграммы. В соответствии с этими расчетами величины  $\sigma^{\pi^{+}np}$  ( ${}^{3}F_{2}$ ) и  $\sigma^{\pi^{+}np}$  ( ${}^{3}F_{3}$ ) равны 0,35 мб и 2,11 мб, соответственно. Подстановка их в (4) и (5) дает значения  $\delta^{Im}$  ( ${}^{3}F_{2}$ ) = 0,5° и  $\delta^{Im}$  ( ${}^{3}F_{3}$ )= 2,25°, которые и были использованы в последнем варианте анализа.

### Обсуждение результатов

1. Проведенный анализ показал, что ни один из рассмотренных нами вариантов не приводит к однозначному (единственному) результату и, как видно из таблицы 4, характер найденных решений в значительной степени определяется предположениями относительно механизма мезонообразования.

Общий вид решений таков, что все они характеризуются большими отрицательными значениями фазовых сдвигов в  ${}^{1}S_{0}$ ,  ${}^{3}P_{0}$   ${}^{3}P_{1}$  состояниях и положительными - в  ${}^{3}P_{2}$ . Всюду невелик и равен 0,5+5<sup>0</sup> параметр смешивания  ${}^{3}P_{2}$  - и  ${}^{3}F_{2}$ -волн. Эти общие результаты находятся в согласии с более ранними работами /2-5,21/ (сравнение дано в Таблице 5).

Несмотря на существенную неопределенность полученных результатов, можно высказать и более четкие утверждения. Так, все наборы дают большие и примерно равные (5+8 мб) сечения образования пионов из <sup>1</sup> 0<sub>2</sub> - состояний.

Расчет, сделанный на основании найденных значений  $\delta^{Im}$  ( ${}^{3}P_{0,1,2}$ )  $\delta^{Im}$  ( ${}^{3}F_{2,3}$ ), ноказал также, что образование мезонов из  ${}^{3}P$  и  ${}^{3}F$  - состояний РР - системы равновероятно во всех вариантах анализа (Таблица 6) и меняется в пределах (3,5+6) мб, согласно разным наборам.

Этот факт нам представляется важным, ибо он означает, что в анализируемой области энергий отсутствуют переходы с d - разлетом мезонов. В самом деле, если бы имели место интенсивные переходы <sup>x)</sup>, например, типа

 ${}^{3}F_{2} \rightarrow ({}^{3}S_{1}d)_{2}; ({}^{1}S_{0}d)_{2}; {}^{3}F_{3} \rightarrow ({}^{3}S_{1}d)_{3},$ 

то при одинаковой роли  ${}^{3}$ Р – и  ${}^{3}$ F – состояний в угловых распределениях  $\pi^{+,o}$  неизбежно возникли бы члены, пропорциональные  $\cos^{4} \theta_{\pi}$ , что противоречит имеющимся экспериментальным результатам, полученным при энергиях 600-670 Мэв /20/.

x) Мы используем розенфольдовскую запись переходов, допускаемых моделью Мандельштама /16/.

Наконец, необходимо заметить, что значения полных неупругих сепогл. чений -  $\sigma_{tot}$  меняются в интервале 12+20 мб. Если бы удалось ввести в анализ найденное из опыта значение этой величины, равное  $(16\pm 2)$ мб, то можно было бы надеяться, что многозначность анализа заметно уменьшится. В связи с этим обстоятельством было бы полезно выполнить измерения  $\sigma_{10}^{\Pi O \Gamma n}$ . с лучшей точностью.

Авторы выражают свою признательность Ю.М. Казаринову за обсуждение вопросов, затронутых в работе.

#### Литература

- 1. Б. Головин, В. Джелепов; Р. Зулькарнеев, Цуй Ва-чуан. ЖЭТФ, <u>44</u>, 142 (1963).
- 2. R.Zul'karneev, I.Silin. Phys.Lett. 3, 265 (1963);

Р. Зулькарнеев, И. Силин. ЖЭТФ, <u>45.</u> 664 (1963).

- 3. N.Hoshizaki, S.Machida, Prog.Theor.Phys. <u>29</u>, 49 (1963). Y.Hama, N.Hoshizaki, Prog.Theor.Phys. <u>31</u>, 609 (1964).
- 4. L. Azhgirey, N. Klepikov, Y. Kumekin, M. Mesheryakov, S. Nurushev, G. Stoletov. Phys.Lett., 6, 196, 1963.

И. Быстрицкий, Р. Зулькарнеев. ЖЭТФ, <u>45</u>, 1169 (1963).

- 5. Л. Ажгирей, Ю. Кумекин, М. Мещеряков и др. Ядерная физика, <u>2</u>, 892, 1965.
- 6. Р. Зулькарнеев, В. Киселев, В. Надеждин, В. Сатаров. Ядерная физика, <u>6</u>, 995 (1967).
- 7. В. Гужавин, Г. Клигер, В. Колганов и др. ЖЭТФ, 47, 1228 (1964).
- 8. Н. Богачев, И. Взоров. ДАН, <u>99</u>, 931, (1954); <u>108</u>, 806 (1956).
- 9. G.Coignet, D.Cronenberger, K.Kuroda et al. Nuovo Cim., 48A, 709 (1966).
- H. Dost, J.Arens, F. Betz et al. Phys.Rev., <u>153</u>, 1394, 1967.
  В. Никаноров, А. Писарев, Х. Позе, В. Петер. ЖЭТФ, <u>42</u>,1209 (1962).
  В. Джеленов, С. Медведь, В. Москалев. ДАН СССР, <u>104</u>,380 (1955).
  H. Stapp, T. Ypsilantis, M. Metropolis. Phys.Rev., <u>105</u>,302, 1957.
  С. Соколов, И. Силин. Препринт ОИЯИ, <u>Д</u>-810, Дубна, 1961.

- 15. M.Macgregor, M.Moravcsik, H.Stapp. Ann.Rev.Nucl.Sci. <u>10</u>, 291 (1960).
- 16, S. Mandelstam, Proc. Roy. Soc. 244, 491 (1958).
- 17. J. Blatt, L. Biedenharn. Phys.Rev. <u>86</u>, 399 (1952); Rev.Mod.Phys. 24, 258 (1952).
- В.Л. Любошиц. Препринт ОИЯИ Р-1568, Дубна, 1964.
  Л. Сороко. Препринт ОИЯИ Р-226, Дубна, 1958.
- 19. U.Amaldi, Jr., R.Biancastelli, S.Francaviglia. Nuovo Cim. <u>47</u>, No.1 (1967).
- А. Дунайцев, Ю. Прокошкин. ЖЭТФ, <u>36</u>, 1656 (1959).
  Б. Неганов, О. Савченко. ЖЭТФ, <u>32</u>, 1265 (1957).
- Л. Глонти, Ю. Казаринов, А. Розанова, И. Силин. Препринт ОИЯИ P1-3525, Дубна, 1967.

Рукопись поступила в издательский отдел 18 ноября 1968 года.

Таблица І

| Состояния                   | $\ell_{\max} = 4 \qquad \tilde{\chi}^2 = 80$ |                             |  |
|-----------------------------|----------------------------------------------|-----------------------------|--|
| -                           | χ² <b>≡83</b>                                | x <sup>2</sup> =95          |  |
| <sup>1</sup> S <sub>o</sub> | -I7,8±3,9                                    | -28,3±7,0                   |  |
| <sup>8</sup> P              | -12,2+4,4                                    | -47,3 <u>+</u> 17,9         |  |
| <sup>8</sup> P <sub>1</sub> | -19,0±4,7                                    | -44,6 <u>+</u> II,9         |  |
| <sup>8</sup> P <sub>2</sub> | 37,7 <u>+</u> 4,7                            | 19,3 <u>+</u> 3,2           |  |
| <sup>1</sup> D <sub>2</sub> | -1,3 <u>+</u> 4,7                            | II,5 <u>+</u> 2,9           |  |
| € 2                         | -I,4±4,5                                     | -2 <b>,0±3,</b> 2           |  |
| <sup>8</sup> F <sub>2</sub> | -0,9±2,I                                     | -3,9 <u>+</u> 2,6           |  |
| <sup>8</sup> F <sub>3</sub> | +3,3±2,0                                     | -1,0 <u>+</u> 2,9           |  |
| <sup>3</sup> F 4            | 8,8±0,9                                      | 3,2 <u>+</u> 1,4            |  |
| <sup>1</sup> G <sub>4</sub> | 7,4 ± 1,3<br>мнимые части фе                 | 5,9 ± I,I<br>зовых сдвигов. |  |
| <sup>8</sup> P <sub>0</sub> | -9,4 <b>±7,</b> 6                            | 7,7 <u>+</u> I4,5           |  |
| <sup>3</sup> P <sub>1</sub> | -4,8±3,4                                     | 9,6±13,6                    |  |
| $^{3}P_{2}$                 | 13 <b>,5<u>+</u>3,</b> 9                     | -0,6±4,6                    |  |
| <sup>1</sup> D <sub>2</sub> | 24 <b>,9<u>+</u>2,</b> 8                     | II,8±5,8                    |  |
| <sup>8</sup> F <sub>2</sub> | 3,3 <u>+</u> 2,8                             | 4,0 <u>+</u> 3,3            |  |
| <sup>8</sup> F              | 4,4 <u>+</u> 2,I                             | 5,0 <u>+</u> 2,7            |  |

# Таблица 2

| Состояния                                                                               | l                           | $max = 5$ , $\tilde{\chi}^2 = 79$ |                              |
|-----------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|------------------------------|
|                                                                                         | x <sup>2</sup> =71          | x² =79                            | x² =87                       |
| <sup>1</sup> S <sub>0</sub>                                                             | -13,2±3,0                   | -26, I±4,4                        | -21, I±3,4                   |
| <sup>8</sup> P <sub>0</sub>                                                             | -23, I±4,7                  | -41,3±7,5                         | -27, 3 <u>+</u> 5,4          |
| <sup>3</sup> P <sub>1</sub>                                                             | -26,5±3,9                   | -40,7+6,5                         | -25,3 <u>+</u> 4,I           |
| <sup>3</sup> P <sub>2</sub>                                                             | 33,3 <u>+</u> I,3           | 19,5±2,4                          | 38,7 <u>+</u> I,6            |
| <sup>1</sup> D <sub>2</sub>                                                             | 16,3 <u>+</u> 2,0           | II,2 <u>+</u> 2,3                 | 8,7 <u>+</u> 2,I             |
| € 2                                                                                     | 0,4±I,7                     | -I,8 <u>+</u> 2,I                 | I,3 <u>+</u> 2,0             |
| <sup>.8</sup> F <sub>2</sub>                                                            | -I,7±I,0                    | -7,8 <u>+</u> 2,6                 | -2,4±I,4                     |
| <sup>3</sup> F <sub>3</sub>                                                             | -3,0±1,9                    | -3,4±I,6                          | 4,2 <u>+</u> I,9             |
| <sup>3</sup> F 4                                                                        | 5,3 <u>+</u> 1,4            | I,0 <u>+</u> I,3                  | 2,5 <u>+</u> I,8             |
| <sup>2</sup> G 4                                                                        | 7,6 <u>+</u> 0,7            | 4,6±0,9                           | 5,5±1,0                      |
| ¢4                                                                                      | -2,0 <u>+</u> I,I           | -3,2±1,3                          | -2,3 <u>+</u> I,2            |
| <sup>3</sup> H <sub>4</sub>                                                             | -3,2±0,9                    | I,0 <u>+</u> I,0                  | -3,I±0,8                     |
| <sup>3</sup> H <sub>5</sub>                                                             | -2,I±I,4                    | -3, I±I, I                        | -I,8±I,4                     |
| <sup>3</sup> H <sub>6</sub>                                                             | -2,8 <u>+</u> 0,9<br>мнимые | I,5±0,5<br>части фазовых (        | -3,4 <u>+</u> 0,9<br>сдвигов |
| $\left( \begin{array}{c} {}^{3}P_{0} \\ {}^{3}P_{1} \\ {}^{3}P_{2} \end{array} \right)$ | 2,8±0,6                     | 2 <b>,5<u>+</u>0,</b> 8           | 5,3 <u>+</u> 0,9             |
| <sup>1</sup> D <sub>2</sub>                                                             | 13,4 <u>+</u> 3,1           | 10,9±5,3                          | -0,6±1,8                     |
| <sup>3</sup> F <sup>2</sup><br><sup>3</sup> F <sup>3</sup>                              | 2, <b>I±0,3</b>             | 2 <b>,2<u>+</u>0,5</b>            | 3,9 <u>+</u> 0,3             |

ПРИМЕЧАНИЕ: фазовые сдвиги получены без привлечения данных о сечениях процессов рр +  $\pi^{\circ}$  рр,  $\pi^{+}$  d,  $\pi^{+}$  вр.

Таблица З

| ()                            | $\ell_{\text{max}} = 5, \ \overline{\chi}^2 = 77$ |                         |  |  |
|-------------------------------|---------------------------------------------------|-------------------------|--|--|
| Состояния —                   | χ² <b>=77,</b> 2                                  | x <sup>2</sup> =81,1    |  |  |
| <sup>1</sup> s <sub>0</sub>   | -I2,6±2,6                                         | -23,9 <u>+</u> 3,5      |  |  |
| <sup>3</sup> P <sub>0</sub>   | -20,8 <u>+</u> 3,3                                | -41,5 <u>+</u> 7,4      |  |  |
| <sup>3</sup> P<br>1           | -29,2 <u>+</u> 2,8                                | -43,1±3,0               |  |  |
| <sup>3</sup> P <sub>2</sub>   | 33,4 <u>+</u> I,3                                 | 19,2 <u>+</u> 2,0       |  |  |
| 1 D 2                         | 15 <b>,5±1,</b> 6                                 | 10 <b>,9<u>+</u>2,2</b> |  |  |
| € <u>2</u>                    | 0 <b>,5±I,7</b>                                   | - 1,9 <u>+</u> 2,I      |  |  |
| <sup>3</sup> F <sub>2</sub>   | -I,9 <u>+</u> I,I                                 | - 6,2 <u>+</u> 2,4      |  |  |
| <sup>3</sup> F <sub>3</sub>   | 3,0 <u>+</u> 1,9                                  | - 3,0 <u>+</u> I,4      |  |  |
| <sup>3</sup> F ,              | 4,I <u>+</u> I,4                                  | <b>1,6<u>+</u>1,</b> 2  |  |  |
| <sup>1</sup> G <sub>1</sub>   | 7,2 <u>+</u> 0,7                                  | 4 <b>,6<u>+</u>0,</b> ε |  |  |
|                               | инимые части ф                                    | азовых сдвигов          |  |  |
| <sup>3</sup> Po 1 2           | 3,9 <u>+</u> 0,4                                  | 3 <b>,5±0,</b> 5        |  |  |
| 1 <sub>D</sub>                | გ <b>, გ<u>+</u>0, 5</b>                          | 8 <b>,5<u>+</u>0,</b> 5 |  |  |
| <sup>3</sup> F <sub>2,3</sub> | 2,6 <u>+</u> 0,2                                  | 2,9 <u>+</u> 0,3        |  |  |

<u>ПРИМЕЧАЩИЕ</u>: в рамках работы<sup>3</sup> использованы данные о неупругих реакциях  $pp \to \pi^0 pp$ .  $pp \to \pi^+ d$ ,  $pp \to \pi^+ np$ .

Решения табл.2 с  $x^2 = 7I_9 \ 87$  и  $x^2 = 79$ перешли при уточнении в решения с  $x^2 = 77_92$ и 8I,I, соответственно.

Таблица 4

| Состояния                   | l                           | .≖5, x <sup>≥</sup> =78 |                     |
|-----------------------------|-----------------------------|-------------------------|---------------------|
| GOCIONNA                    | <u>x</u> <sup>2</sup> =83,8 | x² =86,I                | x² =96,2            |
| <sup>1</sup> S <sub>0</sub> | -23,5±5,2                   | -20,8±5,3               | -23,4±6,9           |
| <sup>3</sup> P <sub>0</sub> | -25,6±5,0                   | -25,7+4,2               | -32,2 <u>+</u> 12,2 |
| <sup>8</sup> p              | -22,0±5,4                   | -32, I <u>+</u> 4,5     | -40,8±13,4          |
| <sup>8</sup> P 2            | 34, 3 <u>+3</u> , 5         | 27,7+2,9                | 23,8±4,6            |
| <sup>1</sup> D <sub>2</sub> | 4,9 <u>+</u> 5,8            | 12,0 <u>+</u> 4,5       | II,2±2,9            |
| ٤ ء                         | -4,3 <u>+</u> 2,4           | -5,8±1,9                | -5,8±2,9            |
| 8<br>F 2                    | -7,0 <u>+</u> 1,6           | -2,7 <u>+</u> 3,I       | -0,8 <u>+</u> 3,3   |
| <sup>3</sup> F <sub>3</sub> | 2 <b>,5<u>+</u>3,I</b>      | 4,8 <u>+</u> 2,6        | 3, I±2, 2           |
| <sup>8</sup> F 4            | I,2±2,2                     | 6,2±2,7                 | 5,9 <u>+</u> 2,4    |
| G 4                         | 5,8±1,2                     | 5,8±5                   | 4,3±1,7             |
| ٤ 4                         | -3,5±1,2                    | -4,2±0,7                | -4,4 <u>+</u> I,I   |
| <sup>8</sup> H <sub>6</sub> | -I,I±0,8                    | -4,8±1,0                | 0,0±1,7             |
| <sup>3</sup> H 5            | -3,7±I,4                    | -0,6±1,7                | 0,0 <u>+</u> 1,2    |
| 3 H 6                       | -0,9 <u>+</u> 0,8           | -2,8±I,I                | <b>I,3±I,</b> 0     |
|                             | мн имне                     | части фазовых           | сдвигов             |
| <sup>3</sup> P <sub>o</sub> | -6,4 <u>+</u> 5,4           | -5,5 <u>+</u> 6,I       | -3,0±I4,5           |
| <sup>8</sup> P <sub>1</sub> | +2,0±5,9                    | 6,3 <u>+</u> 2,8        | 6,9 <u>+</u> I0,7   |
| <sup>3</sup> P <sub>2</sub> | 8, I±6, 3                   | 3,6±2,8                 | 4,2±7,6             |
| <sup>1</sup> D <sub>2</sub> | 26,5±4,8                    | 20,5±4,4                | 17,1 <u>+9</u> ,2   |
| <sup>3</sup> F2             | 0,50                        | 0,50                    | 0,50                |
| <sup>3</sup> F <sub>3</sub> | 2,25                        | 2,25                    | 2,25                |

Таблица 5

| Состояния                   | Результ.раб./21/            |                   | Результ              | Результ.раб. /21/   |                                  |
|-----------------------------|-----------------------------|-------------------|----------------------|---------------------|----------------------------------|
|                             | x <sup>2</sup> =2 <b>37</b> | x² =249           | $\chi^{2} = 24I$     | x <sup>2</sup> =234 | x <sup>2</sup> =114,7            |
| <sup>1</sup> S <sub>0</sub> | -27,2+2,5                   | -26, I±3,0        | -29,8 <u>+</u> 2,5   | -18,4 <u>+</u> 3,0  | -28,5±9,6                        |
| <sup>3</sup> P <sub>0</sub> | -52,7 <u>+</u> 7,8          | -30, I±4, 4       | -53,5 <u>+</u> 6,5   | -20, 3 <u>+</u> 2,8 | -33,5±14,                        |
| <sup>3</sup> P <sub>1</sub> | -37,4 <u>+</u> 2,0          | -16,0±2,7         | -40,2±3,2            | -28, 3+2, 2         | -28,5±4,6                        |
| <sup>3</sup> P <sub>2</sub> | 17,8±1,4                    | 40,7 <u>+</u> 2,5 | 17,7 <u>+</u> 1,2    | 35,I±I,3            | 26,0±4,0                         |
| <sup>1</sup> D 2            | 5,7 <u>+</u> 2,5            | -2,0±2,I          | 5,5±1,7              | 10,0±1,6            | 4,8+4,2                          |
| € 2                         | -2,2 <u>+</u> I,6           | -2,0 <u>+</u> I,2 | -I,9 <u>+</u> I,2    | 3,2±1,0             | -3,7±2,8                         |
| <sup>3</sup> F 2            | -6,2±1,5                    | -8,6±0,5          | -9,8±I,3             | -4,2+0,6            | -2, I <u>+</u> I,8               |
| <sup>s</sup> F <sub>3</sub> | -I,0±I,6                    | 4,6±0,8           | -2,71,I              | I,42±0,             | 8 -I,2 <u>+</u> 5,9              |
| <sup>8</sup> F 4            | 3,00±0,6                    | 0,6±0,7           | I,7±0,7              | 3,7±0,7             | 4,8±1,0                          |
| <sup>1</sup> G 4            | 5,4±0,7                     | 4,0±0,7           | 4,0 <u>+</u> 0,6     | 5,8±0,6             | 4,9±I,9                          |
|                             |                             | мнимые час        | ти фазовых           | сдвигов             |                                  |
| <sup>3</sup> P <sub>0</sub> | -                           | -                 | )                    | )                   | 0,98 <u>+</u> 0,2                |
| <sup>3</sup> P <sub>1</sub> | -                           | -                 | 2,3+0,7              | 2,7+0,5             | I,26±0,2                         |
| <sup>3</sup> P <sub>2</sub> | 3,6±1,4                     | 12,0±2,2          | J                    | )                   | 0,69±0,1                         |
| <sup>1</sup> D <sub>2</sub> | 5,3±3,4                     | 20,6±1,6          | 8,3±2,8              | 10,0 <u>+</u> 2,6   | 0,65 <u>+</u> 0,04 <sup>(1</sup> |
| <sup>3</sup> F <sub>2</sub> | 3,3±2,I                     | 0,0+0,0           | 1                    | )                   | 0,97±0,06(1                      |
| <sup>3</sup> F <sub>8</sub> | 10,3 <u>+</u> 3,1           | I,8±0,8           | } <sup>2,8±0,3</sup> | 2,6±0,3             | 0,60±0,08                        |

| Ta | бл | ИЦ | a | 6 |
|----|----|----|---|---|
|    |    |    |   |   |

| Сечение<br>поглощ.<br>в мб. | Решения таб.1             |                    | Решения таб. 2   |                    | Решения таб. 3 Решения раб. 72 |                       | n pad. 721/         |
|-----------------------------|---------------------------|--------------------|------------------|--------------------|--------------------------------|-----------------------|---------------------|
|                             | <u>x</u> <sup>2</sup> =83 | x <sup>2</sup> =95 | x ³=7I           | x <sup>2</sup> =79 | x <sup>2</sup> =77,2           | x <sup>2</sup> =233,8 | x <sup>2</sup> =237 |
| σ 807A ( <sup>3</sup> P)    | 6,3±1,1                   | 3,9 <u>+</u> 3,0   | 3,2 <u>+</u> 0,4 | 3,0 <u>+</u> 0,5   | 4,4 <u>+</u> 0,2               | 3,2 <u>+</u> 0,3      | 2,3 <u>+</u> 0,8    |
| o mera (1D)                 | 8,5±0,4                   | 5,8±1,8            | 6,3 <u>+</u> 0,9 | 5,5±1,8            | 4,7 <u>+</u> 0,2               | 5,2±0,9               | 3,2 <u>+</u> 1,8    |
| o nora (3 F)                | 6,0±1,6                   | 6,8±1,9            | 3,4 <u>+</u> 0,3 | 3,48 <u>+</u> 0,5  | 4,1±0,2                        | 7,20±0,3              | 9,5±1,5             |
| o tot                       | 20,8                      | 17,5               | 12,9             | 12,0               | 13,2                           | 15,6                  | 15,0                |
|                             |                           |                    |                  |                    |                                | !                     |                     |

<sup>о погл</sup>=(16,0<sup>+</sup>2,0)10<sup>-27</sup>см<sup>2</sup>

Экспериментальное значение