ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Million and

1967.

1-154

Дубна

P1 - 3641

Н.Далхажав, П.Девински, В.Заячки, З.Златанов,
Л.С.Золин, Л.Ф.Кириллова, З.Корбел, П.Марков,
Нго Куанг Зуй, Нгуен Дин Ты, В.А.Никитин, Л.Роб,
В.А.Свиридов, Д.Тувдендорж, Л.Христов, Х.Чернев,
Чыонг Бьен, М.Г.Шафранова

ИТОГОВЫЕ ДАННЫЕ ПО УПРУГОМУ Р. Р.ИР. d РАССЕЯНИЮ НА МАЛЫЕ УГЛЫ И ВЕЩЕСТВЕННАЯ ЧАСТЬ АМПЛИТУДЫ Р. п РАССЕЯНИЯ В ИНТЕРВАЛЕ ЭНЕРГИЙ 1-10 ГЭВ

P1 - 3641

Н.Далхажав, П.Девински, В.Заячки, З.Златанов, Л.С.Золин, Л.Ф.Кириллова, З.Корбел, П.Марков, Нго Куанг Зуй, Нгуен Дин Ты, В.А.Никитин, Л.Роб, В.А.Свиридов, Д.Тувдендорж, Л.Христов, Х.Чернев, Чыонг Бьен, М.Г.Шафранова

. م

\$185/,

ИТОГОВЫЕ ДАННЫЕ ПО УПРУГОМУ Р-РИР-РАССЕЯНИЮ НА МАЛЫЕ УГЛЫ И ВЕЩЕСТВЕННАЯ ЧАСТЬ АМПЛИТУДЫ Р-п РАССЕЯНИЯ В ИНТЕРВАЛЕ ЭНЕРГИЙ 1-10 ГЭВ

Направлено в ЯФ

В настоящей статье приводятся результаты исследования протон-дейтонного упругого рассеяния при энергиях 1,2,4,6,8 и 10 Гэв в интервале /t/ от 0,003 до 0,2 (Гэв/с)². Дифференциальные сечения измерялись на внутреннем пучке синхрофазотрона ОИЯИ с помощью тонкой (<1 мк) мишени из обычного или дейтрированного полиэтилена и аппаратуры, использованной нами ранее для измерения дифференциального сечения упругого $\mathbf{p} - \mathbf{d} - \text{рассеяния надежно отделялись от случаев квазиупругого рассеяния, в которых дейтон диссоциировал на отдельные нуклоны.$

Дифференциальное сечение измерялось со статистической ошибкой = 3%, абсолютная точность составляла 7%. В конце текста приведены таблицы I и II, в которых даны дифференциальные сечения упругого p - p и p - d - рассеяния. Область малых углов рассеяния, где интерференция кулоновского и ядерного рассеяний играет наиболее существенную роль, дает наибольшую информацию при определении величины a_{pd} -отношения реальной части ядерной амплитуды p - d - рассеяния к ее мнимой части. Анализ полученных данных по упругому p - d - рассеянию позволил вычислить величину

$$\alpha_{pd} = \frac{\text{Re } A_{pd} (0)}{\text{Im } A_{pd} (0)} .$$

Аналогично тому, как это делалось при анализе данных по упругому р - р - рассеянию, дифференциальное сечение аппроксимировалось выражением:

$$\left(\frac{d\sigma(t)}{dt}\right)_{CUM}^{m} / i Im Apd(t) \sqrt{1+\beta} + Re Apd(t) + A_{\sigma}(t) / 2, \quad (1)$$

где Ара. Аς - ядерная и кулоновская амплитуды p-d - рассеяния, β - коэффициент, описывающий превышение дифференциального сечения вблизи 0⁰ над оптической точкой, не обусловленное наличием реальной части в амплитуде p-d-рассеяния или кулоновской амплитудой. Для амплитуд было принято следующее аналитическое представление:

Im Apd (t) =
$$\sqrt{\left(\frac{d\sigma}{dt}\right)_{0}} \exp \left[\frac{\chi_{1}(b_{1}t+c_{1}t^{2})\right]}{j_{1}^{2}}$$
 a)

Re Apd (t) =
$$\sqrt{\left(\frac{d\sigma}{dt}\right)_0^2} a \exp\left[\frac{1}{2}\left(b_t t + c_t^2\right)\right]$$
 6)

Ac (t) =
$$-\frac{2nF(t)}{t}e^{-i\eta}i\eta = 2n\ell n\frac{\phi}{\theta}$$
 B) (2)

$$2n = \frac{z_1 \ z_2}{137 \ \beta}; \ \left(\frac{d \sigma}{d t}\right)_0 = \frac{\sigma^2}{16 \pi \hbar^2} \qquad r)$$

$$t = -2 p_{CLM}^{2} (1 - \cos \theta); k = \frac{p_{CLM}}{K}$$
 (e)

Дадим некоторое пояснение к этим формулам. Экспоненциальная зависимость амплитуд от квадрата переданного импульса t, с одной стороны, следует из оптической модели (для небольших значений t), с другой стороны, хорошо подтверждается многочисленными экспериментами по упругому рассеянию частиц, выполненными к настоящему времени. Квадратичный член в показателе выражений (2a) и (26) оказывается необходимым при описании данных по p - d - рассеянию в интервале 0,003 $\leq /t/ \leq$ 0,2 (Гэв/с)². В этом же интервале дифференциальное сечение упругого p-p -рассеяния хорошо аппроксимируется выражениями, в которых квадратичный член с t^2 опущен. Нормировочный множитель в амплитудах $\sqrt{(\frac{d\sigma}{dt})}_0$ ($\frac{d\sigma}{dt}$) – оптическая точка) выбран из соображения размерности и автоматически обеспечивает выполнение оптической теоремы (2г). Функция F(t)(2 d) играет роль электромагнитного формфактора дейтона. Заметим, что в области малых углов рассеяния, которая нас в основном интересует, $F(t) \approx 1$, поэтому приближение, принятое нами, вполне оправдано.

Амплитуда кулоновского рассеяния сильно взаимодействующих частиц (2в) имеет как реальную, так и мнимую части. Реальная часть много больше мнимой. Последняя определяется фазой η . Теоретически вычисление фазы η заключается в учёте радиационных поправок к сильным взаимодействиям. Эта задача решается только на основании определенных модельных приближений. Бете выполнил анализ в квазиклассическом нерелятивистском приближении и нашел для величины ϕ (см. 2в) значение

где • - радиус снльного взаимодействия. Л.Д.Соловьев /5/ решал ту же задачу методами релятивистской квантовой электродинамики. Получено значение Ф =2. При этом оптическая теорема должна записыраться в виде

$$Im A (0) = \frac{k}{4\pi} \left[\sigma(>\theta \min) - \sigma_{\sigma}(>\theta \min) \right] +$$
(3)

+ 2n Re A (r0)
$$\ell$$
n (2 / θ min),

А – ядерная амплитуда рассеяния. Здесь σ (> θ min) – полное сечение, в котором упругая его часть проинтегрирована начиная с некоторого малого угла θ min. θ min определяется экспериментальными возможностями методики измерения полного сечения σ . σ_0 (> θ min) имеет тот же смысл для кулоновского сечения. Иначе говоря, эта запись оптической теоремы явно учитывает эффект интерференции ядерного и электромагнитного взаимодействий и его влияние на полное сечение упругого рассеяния.

Неопределенность фазы η оказывает малое влияние на параметр

$$\alpha = \frac{\operatorname{Re} A_{pd}(0)}{\operatorname{Im} A_{(0)}}$$

ŧ.

В рамках точностей наших опытов величину известно, что дифференциальное сечение рассеяния частиц со спинами при t=0 может превышать оптический предел из-за вклада спин-

зависящих членов в амплитуду рассеяния. Этот факт мы учитываем параметром β в формуле (1). При этом предполагается, что амплитуда рассеяния в разных спиновых состояниях (синглетное и триплетное в случае р-d- рассеяния) не отличаются по форме зависимости ю и квартетное в случае р-d-рассеяния) не отличаются по форме зависимости от ^t друг от друга. В терминах нашей параметризации (2a, 2б) это значит, что величины b_j , b_r , c_j , c_r не зависят от спинового состояния системы взаимодействующих частиц. Так как параметр b_r прямо связан с радиусом взаимодействия, то по отношению к b_j это предположение кажется разумным, ибо максимальный радиус сильного взаимодействия определяется массой самого легкого адрона – π -мезона и не может значительно превышать величину $m_{\pi_{\pi}}^{-1}$ Подробно этот вопрос рассмотрен в работе И.И.Левинтова (8/2). Автор предлагает специальную параметризацию дифференциального сечения, такую, что величины α и β приобретают наглядный вид.

Используя экспериментальные данные, мы вычисляем полное сечение упругого p-d - рассеяния σ_{pd} и параметры a_{pd} , b_{j} , b_{j} , c_{j} , c_{j} и β по методу наименьших квадратов. Результаты собраны в таблице III. Величины u_{pd} для 2,78 и 4,85 Гэв/с после работы^{/3/} нами не уточнялись. Параметр β при всех энергиях в пределах ошибок равен нулю. Анализ по формулам работы^{/6/} дает подобные результаты.

Большой интерес для физики высоких энергий представляет величина

$$x_{pn} = \frac{\text{Re } A_{pn} (0)}{1 = A_{pn} (0)}$$

для рассенния протона на неитроне. Мы вычисляли эту величнну на основе Глауберовой модели⁷⁷ так же, как это делалось намя в работе⁷³⁷. На рис. 1 результаты эксперимента сравниваются с предсказаннями, следующими из дисперсионных соотношений. Сплошная кривая рассчитана Картером и Баггом⁷⁸⁷, пунктирными линиями показан коридор ошибок для этих расчётов. Данные по перезарядке нейтронов на протонах, полученные в опытах Палевского⁷⁹⁷ и Мэннинга¹⁰⁷, позволяют получить два решения для значений величины а_{ра}. Одно из них, как видно, лучше согласуется с дисперсионными соотношениями, второе значительно им противоречит. Как видно из рис. 1, полученные нами данные согласуются с дисперсионными соотношениями и лучше соответствуют тому решению для а_{рв} из работ Палевского и Мэннинга, которое дает меньшую величину.

В последние годы появился ряд работ, в которых получены некоторые ограничения на поведение амплитуды упругого рассеяния при высоких энергиях, следующие из общих принципов квантовой теории поля. Так, в работе Мак Доуэла и Мартина ^{/11/} было получено неравенство:

$$\left[\frac{d}{dt} \ln A (S,t)\right] > \frac{\sigma^2}{36\pi\sigma_{e}} - \frac{1}{9k^2}, \qquad (4)$$

где σ - полное сечение,

Å

сечение упругого рассеяния.
 выведено следующее неравенство для значений
 -ой производной амплитуды упругого рассеяния при t = 0:

$$\frac{1}{A(S,0)} \left[\frac{d^{n} A(S,t)}{dt^{n}} \right]_{t=0} > \frac{1}{(2n+1)n!} \left[(1 + \frac{1}{2n+1}) \frac{\sigma^{n}}{16\pi \sigma_{n}} \right]^{n}, (5)$$

Невыполнение хотя бы одного из а неравенств говорило бы о нарушении унитарности и аналитичности. Имея экспериментальные данные о величине и поведении амплитуды упругого p-p и p-d - рассеяния в области $/t/<0.2(\frac{\Gamma_{3B}}{C})^2$, мы попытались проверить выполнимость указанных выше неравенств Попова и Мура. (В случае выполнимости неравенства П-М (5) неравенство Д-М (4) тем более выполняется). Как показывает расчёт, неравенство П-М для первой и второй производных амплитуд p-p и p-d-упругого рассеяния в области энергий 1 + 10 Гэв выполняется. Для иллюстрации выполнимости неравенств П-М, даем таблицу IV для энергии 10 Гэв в случае p-p и p-d-рассеяния.

- 1. В.А.Никитин, А.А.Номофилов, В.А.Свиридов, Л.Н.Струнов, М.Г.Шафранова. ПТЭ № 6, 18 (1963).
- 2. Л.Ф.Кириллова и др. XII Международная конференция по физике высоких энергий, Дубна 1964 г.
- 3. Л.С.Золин, Л.Ф.Кириллова, Лю-Цин-цян, В.А.Никитин, В.С.Пантуев, В.А.Свиридов, Л.Н.Струнов, М.Н.Хачатурян, М.Г.Шафранова, З.Корбел, Л.Роб, П.Девински, З.Златанов, П. Марков, Л.Христов, Х.Чернев, Н.Далхажав, Д.Тувдендорж. ЖЭТФ (Письма в редакцию) т. Ш вып. 1,15 (1966).

- 4. H.A.Bethe. Ann. Phys. 3, 190, (1958).
- 5. Л.Д.Соловьев. ЖЭТФ 49, вып. 1 (7), 292 (1965).
- 6. I.I.Levintov. Phys. Lett 19, 149 (1965).
- 7. R.I.Glauber. Phys. Rev 100, 242 (1955).
- 8. A.A.Carter, D.V.Bugg Phys. Lett v. 20, N2, 203, (1966).
- J.L. Friedes, H.Palevsky, R.L.Stearns and R.J. Sutter. Phys. Rev. Lett v. 15, N1, 38 (1965).
- 10.G.Manning, A.G.Parham, J. D. Jafar, H.B. Van der Raay, D.H.Reading,
 D.G.Ryan, B. D.Jones, J. Malos and N.H.Lipman. Nuovo Cim 41A, 167 (1966)
- 11. Mc Dowell and Martin Phys. Rev. 135, B 960 (1964).
- 12. В.С.Попов, В.Д.Мур. "Ядерная физика" т.3, 561 (1966).

Рукопись поступила в издательский отдел 27 декабря 1967 года.

Таблица 1

Дифференциальное сечение упругого р - р-рассеяния

•

•

$\frac{d \sigma}{d \omega}$		2,78 [′] Гэв/с (30.7 <u>+</u> 0.7) мбн/стерад		4	,85 Гэв/с	6,87 Гэв/с (78.9 <u>+</u> 1.9) мбн/стерад	
				(53 . 3 <u>+</u>)	1.8) мбн/стерад		
÷	No	θ ⁰ _{сцм}	d σ мбн/стерад	θ°сцм	d <i>o</i> мбн/стеј d <i>w</i> мбн/стеј	рад <i>в</i> сц	м dø мбн/стер. dw
	I 2 3 4 5 6 7 8 9	3.37 3.89 4.40 4.79 5.15 6.36 7.27 9.42 10.9	$38.2 \stackrel{+}{=} 2.1$ $36.4 \stackrel{+}{=} 1.9$ $36.7 \stackrel{+}{=} 1.8$ $33.2 \stackrel{+}{=} 1.7$ $31.2 \stackrel{+}{=} 1.6$ $28.7 \stackrel{+}{=} 1.1$ $28.6 \stackrel{+}{=} 1.1$ $26.3 \stackrel{+}{=} 1.1$ $24.1 \stackrel{+}{=} 1.0$ $20.2 \stackrel{+}{=} 1.6$	2.67 3.14 3.45 3.85 5.25 5.86 6.58 7.25 7.72	85.8 ± 7 73.2 ± 6 71.8 ± 4 63.1 ± 3 52.4 ± 2 51.5 ± 2 47.2 ± 2 44.2 ± 2 43.7 ± 2 20.4 ± 1.5	I.95 2.42 2.91 3.39 3.85 5.30 5.35 6.13 6.15 7.67	132.9±8.4 104.1±6.0 96.7±3.0 90.7±2.4 82.4±1.9 73.5±1.7 73.1±1.6 63.3±1.4 64.8±1.0
	10	15.2	20.3 = 1.6	9.00 II.I	34.6 ± 1.5	9.06	52.7-5.1 49.1 - 1.9
	I2	20.5	10.4 - 0.7 12.7 - 0.5	II.2 II.3 I4.4	34.9 ± 1.5 31.7 ± 1.3 23.7 ± 1.2	9.00 9.75 11.2 12.0 12.8 15.0	42,3 [±] 1.9 32.3 [±] 1.2 26.8 [±] 1.1 26.3 [±] 1.3 19.1 [±] 1.0
					I		

ŧ

ł

à

.

Таблица 1 (продолжение)

Дифференциальное сечение упругого р - р - рассеяния

PC	8,89: Гэв/с (102.0 <u>+</u> 4.0) мбарл/стерид.		10,9 [:] Гэв/с		
(<u>dσ</u>) dω			(121.9 <u>+</u> 1.9) мбн/стерад		
N₀	θ ⁰ сцм	dσ/dω мбн/стерад	θ ⁰ сцм	<u>dø</u> мбн/стерад. dω	
I	I.22	258 ± 46	I.39	2I0 ±10	
2	I.7I	173 ± 16	I.48	01 ± 0 01	
3	I.99	I36 ± 6.7	I .7 2	170 ±7	
4	2,22	I33 ± 8.7	I.99	I49 ±6. 3	
5	2,60	126 ± 5.0	2.22	142 ±6,3	
6	2.76	II9 ± 4.5	2.62	I36 ± 5.5	
7	2,99	113.5±3.6	3.17	I22 .9 +4.4	
8	3.42	100.6±3.7	4.16	112 .0±3.7	
9	4.52	87.4±I.9	4.83	92.6-3.0	
10	4.94	90.5±2.1	6.27	80 .8 ⁺ 2.6	
II	5.43	84.6-2.0	7.47	62.I ⁺ 2.5	
12	8.15	56.8±2.8	8,85	47.I ⁺ 2.3	
13	8.34	54.6 - I.8	9,95	37.6-2.3	
14	9.75	37.I ± I.5			
15	10.5	35.4± I.4			
16	II.6	25.5 - 1.2			

Таблица II Дифференциальное сечение упругого р - d - рассеяния

٦

l

РС (Гэв) лаб	1.70`		2	.78	4.8	5
$\left(\begin{array}{c} \frac{d\sigma}{d\omega} \\ \end{array}\right) \sigma.$	(97.8 <u>+</u> 0,5) м	бн/стерад	(202.4+_1.0) мбн/стерад	(373 <u>+</u> 2) №	юн/стерад
	θ ⁰ _{сцм}	d от мбн d остерад	θ ⁰ сцм	dø мбн dø стерад	θ [°] сцм	<u>d σ</u> мбн d ω стерад
I 23 45 67 89 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 25 26 27 28 29 30 31 32 33 4 35 36 37	4.07 4.12 4.23 4.29 4.50 4.50 4.50 4.81 5.13 5.44 5.75 6.07 6.68 7.16 8.93 15.65	98.2+4.1 99.8-4.1 95.4+4.0 95.0+4.0 85.8+3.5 82.3+2.4 86.3+3.4 82.1+2.2 80.6+2.0 75.1+1.9 72.2+2.5 72.6+1.8 65.9+1.5 61.4+1.4 47.3+1.3 12.7*+0.5	3.07 3.17 3.29 3.37 3.40 3.40 3.40 3.40 3.45 3.52 3.73 3.89 3.98 4.13 4.46 4.54 4.89 4.90 5.19 5.30 5.57 5.66 5.99 6.56 7.30 8.86 10.8 11.2 13.6 14.6 15.6	172+7 160-6.2 161+6.0 157+8.5 158+5.5 163+8.5 158+5.3 157+6.5 147+6.0 142+8.0 151+4.5 144+5.0 154+4.5 143+5.0 138+4.0 132+4.5 126+3.5 116+8.0 112.6+3.6 103.0+3.9 92.2+3. 70.7+2.5 54.5+2.0 28.2+1.5 23.6+1.0 11.3+0.5 8.5+0.5 5.7+0	2.4I 2.44 2.48 2.57 2.65 2.68 2.70 2.76 2.88 3.02 3.14 3.20 3.33 3.68 3.75 3.77 3.78 3.82 3.84 3.94 0 4.06 0 4.37 0 4.6I 5.41 5.41 5.47 6.57 9.3I	302-11 307-13 313-10 287-13 287-13 287-13 277-12 292+10 272+12 260-8 276+15 261-8 259+10 204+10 204+10 204+6 212+14 208+7 202+10 201+10 206+6 186+6 152+5.0 145+5.0 124+4.2 127+7.0 117+5.0 74+2.7 71.8+3.0 68.0+2.5 45.073.0 35.9+1.5 18.2+1.0

.

Дифференциальное сечение упругого р - d-рассеяния

PC	(Гэв) даб	6.87	8,89		10.9	
(dσ dω) o(54	7+3) мбн/стерад	(711+19) мбн	/стерад	(857+32) м	би/стеред
.№	θου	м dσ/dω мбн/стерад	θ ⁰ _{СЦМ}	dσ/dω мбн/стер	θ^0_{CIIM}	dσ/dω
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	I.45 I.49 I.67 I.71 I.91 I.93 2.95 2.32 2.37 2.54 2.76 2.92 3.26 3.33 3.76 4.66 4.74 6.07 6.62 7.65 8.35 9.78 9.83 9.83 9.83 10. 87 II.67 I2.64	673 ± 142 604 ± 50 517 ± 21 488 ± 22 531 ± 18 469 ± 13 465 ± 12 479 ± 13 441 ± 10 397 ± 13 399 ± 10 347 ± 8 314 ± 9 285 ± 8 249 ± 5 161 ± 6 159 ± 4 74.0 ± 2 54 ± 1.5 26.8 ± 1 16.4 ± 1 5.4 ± 0.5 5.6 ± 0.5 6.0 ± 0.5 6.0 ± 0.5 1.27 ± 0.23 1.03 ± 0.23	I.36 I.48 I.64 I.76 I.94 2.13 2.16 2.33 2.37 2.63 2.65 2.99 3.08 3.20 3.51 3.80 4.31 5.37 5.42 6.32 7.08 7.62 8188	$8I7 \pm 53$ $7I4 \pm 28$ $67I \pm 20$ 637 ± 20 563 ± 30 570 ± 17 556 ± 17 537 ± 14 490 ± 15 463 ± 13 $44I \pm 13$ 388 ± 11 377 ± 11 360 ± 10 $3I6 \pm 12$ 244 ± 10 170 ± 10 86 ± 2.3 78.2 ± 5 42.4 ± 1.4 20.4 ± 1 14.2 ± 1 3.85 ± 0.6	L.16 I.20 I.30 I.35 I.42 I.58 I.58 I.74 I.74 I.96 I.96 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.1	940±42 964±45 986±45 886±40 839±30 810±30 756±22 726±25 734±22 650±22 650±22 633±20 594±20 574±25 533±20 509±14 489±20 423±15 445±13 338±11 339±13 233±8 241±12 88.7±2.5 46.1±1.6 30.8±1.2 26.2±1.0 4.45±0.7
26 27	II.67 I2.64	I.27 [±] 0.23 I.03 [±] 0.23			6.42 8.16 8.22	26.2±1.0 4.45±0.7 4.36±0.5

.

Таблица III

Значения полных сечений упругого р - d - рассеяния и параметров а, b и с для упругого р - d-рассеяния в интервале энергий "1-10 Гэв

Е (гэв) Pod o	" (мбн)	^b ; = b (Гэв/с) ⁻²	с, ≡с (Гэв/с) ²⁴ а
I 1.70 X I 1.70 3.40 I 2 2.35 5.56 I 4 4.85 9.70 6 6.87 13.75 8 8.85 17.78 IO 10.80 21.80	0,7±0,7 0,2±0,7 9,5±0,7 9,6±0,7 9,3±0,7 9,0±0,6	33,7 [±] I 37,5 [±] I,5 37,8 [±] I,4 36,0 [±] 0,8 36,5 [±] I,0 34,3 [±] 0,9	$42^{\pm}10 -0, 14_{\pm}0, 0$ $83^{\pm}12$ $72^{\pm}14$ $45^{\pm} 6 - 0, 30^{\pm}0, 0$ $40^{\pm} 7 - 0, 26_{\pm}0, 0$ $34^{\pm} 6 - 0, 39_{\pm}0, 0$

Т. Значения неравенств П. пр	эблица IV .М. дляр-р и 10 Гэв	у и р- d-рассеяния
л =1 вед (Гэв/с) ⁻²	п=2 вед (Гэв/с) ⁻⁴
P-P 4,35±0,35 > 3,6 P-d I7 ±0,5 > I3,5	;5±0,15 ; ±1	I7±6 > 10±0,5 319±10 > 150±24

\$

Рис.1.

14

- 6