ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

192

Sinte States

OF XLANCE

Дубна

P1 - 3416

31/11-67

И.М. Василевский, В.В. Вишняков, И.М. Иванченко

ФАЗОВЫЙ АНАЛИЗ ПИОН-НУКЛОННОГО РАССЕЯНИЯ ПРИ ЭНЕРГИИ 310 МЭВ С ПРИВЛЕЧЕНИЕМ ДАННЫХ ПО ПОЛЯРИЗАЦИИ НЕЙТРОНОВ ОТДАЧИ

1967.

P1 - 3416

И.М. Василевский, В.В. Вишняков, И.М. Иванченко

ФАЗОВЫЙ АНАЛИЗ ПИОН-НУКЛОННОГО РАССЕЯНИЯ ПРИ ЭНЕРГИИ 310 МЭВ С ПРИВЛЕЧЕНИЕМ ДАННЫХ ПО ПОЛЯРИЗАЦИИ НЕЙТРОНОВ ОТДАЧИ

5231/4 mp.

В 1963 году Вик и Ругге провели фазовый анализ данных пион-нуклонного рассеяния при энергии 310 Мэв $^{/1/}$. В этом анализе были использованы измеренные ими дифференциальные сечения и поляризация протонов отдачи в процессе упругого рассеяния отрицательных пионов протонами $^{/2/}$, а также вся информация, имевшаяся в районе 310 Мэв, по пион-протонному рассеянию $^{/3,4,5/}$. В SPDF — анализе было получено три набора фазовых сдвигов со следующими значениями M:43,7; 64,2 и 71,7 при ожидаемом $\overline{M} = 52$. Значения фазовых сдвигов набора I Вика-Ругге приведены в таблице 1.

Феноменологический фазовый анализ по $\pi^- p$ - рассеянию, проведенный Аувилом и Лавласом ⁶⁶, привел к заключению, что не первый, а второй набор Вика-Ругге лучше согласуется с экспериментальными результатами при энергиях больше и меньше 310 Мэв.

На Дубненской конференции по физике высоких энергий (1964 г.) нами были доложены результаты фазового анализа пион-нуклонных данных при энергии 300 Мэв ^{/7/}. Там было показано, что фазовые сдвиги набора, аналогичного набору I Вика-Ругге, испытали сильное изменение и произошло значительное увеличение М при введении в фазовый анализ экспериментально измеренной величины поляризации нейтронов отдачи от процесса перезарядки отрицательных пионов протонами ^{/8/ x)}.

Однако до последнего времени в литературе происходит обсужденне того, что набор I Вика-Ругге плохо удовлетворяет экспериментальным данным при энергиях, соседних с 310 Мэв. С целью показать, что в настоя -

3

х) Эти данные появились после опубликования работы Вика и Ругге.

щее время нет необходимости вообще обсуждать набор і Вика-Ругге, мы повторили фазовый анализ Вика и Ругге, включив в анализ результаты по измерению поляризации нейтронов отдачи от процесса перезарядки отрицательных пионов протонами. Полученные результаты представлены в табл.2. Программа проведения фазового анализа пион-нуклонного расседния описана в работе ^{/9/}. Сравнение величин фазовых сдвигов, помещенных в табл.1 и 2, показывает, что почти все фазовые сдвиги набора 1 испытали сильные из-

Если обратиться к рисунку, на котором представлены ожидаемое угловое распределение поляризации нейтронов для трех наборов фазовых сдвигов Вика-Ругге и измеренная величина, то станет понятным происшедшее большое увеличение М , соответствующего первому набору при введении в фазовый анализ данных по поляризации нейтронов отдачи от процесса нерезарядки отрицательных пионов протонами. Штрихами показан коридор ошибох.

Литература

- 1. O.T.Vik, H.R.Rugge. Phys.Rev., 129, 2311 (1963).
- 2. H.R.Rugge, O.T.Vik. Phys.Rev., 129, 2300 (1963).
- 3. J.H.Foote, O.Chamberlain, E.H.Rogers, H.M.Steiner, C.E.Wiegand, T.Ypsilantis. Phys.Rev., 122, 948 (1961).
- 4. J.H.Foote, O.Chamberlain, E.H.Rogers, H.M.Steiner. Phys. Rev., 122, 959 (1961).
- 5. J.C.Caris, R.W.Kenney, V.Perez-Mendez, W.A.Perkins. Phys.Rev., <u>121.</u> 893 (1961).
- 6. P.Auvil, C.Lovelace. Nuovo Cim., 33, 473 (1964).
- 7. И.М.Василевский, В.В.Вишияков, И.М.Иванчнеко, В.А.Шегельский. Международная конференция по физике высоких энергий. Дубиа, 1964 г., том 1, стр. 43.
- R.E.Hill, N.E.Both, R.J.Esterling, D.L.Jenkins, N.H.Lipman, H.R.Rugge, O.T.Vik. Bull.Am.Phys.Soc., <u>9</u>410 (A) (1964).
- 9. И.М.Иванченко, В.А.Шегельский. Ядерная физика, 3, 108 (1966).

Рукопись поступила в издательский отдел 29 июня 1967 года

4

Таблица 1

۰

Таблица 2

				سروبية بدارة ومستورية والمتعادين	فالمتر المستحد الأربية المتحاصر	·
	I			I	П	ш
S 31	I4,4 <u>+</u> I,8		S ₃₁	-21,5 <u>+</u> 0,5	-2I,I <u>+</u> 0,6	-I5,9 <u>+</u> I,2
P 31	I,I <u>+</u> 2,0		P31	-I0,4 <u>+</u> I,2	-I0,I <u>+</u> I,2	- 0,6 <u>+</u> I,4
Ρ.33	I35,I <u>+</u> 0,6		ρ,,	135,6 <u>+</u> 0,9	I35,0 <u>+</u> 0,8	I34,5 <u>+</u> 0,6
D33	5,4 <u>+</u> I,0		D ₃₃	-2,2 <u>+</u> 0,9	-I,7 <u>+</u> 0,9	4,4 <u>+</u> 0,9
D 35	-6,9 <u>+</u> I,0		D35	0,0 <u>+</u> I,0	-0,5 <u>+</u> I,0	-6,2 <u>+</u> 0,7
F 35	0,8 <u>+</u> 0,3		F ₃₅	-I,2 <u>+</u> 0,4	-0,9 <u>+</u> 0,5	0 ,7<u>+</u>0,3
F 37	-2,0 <u>+</u> 0,6		F ₃₇	2,4 <u>+</u> 0,6	2,2 <u>+</u> 0,6	-I,4 <u>+</u> 0,5
Sii	-6,0 <u>+</u> I,5		S"	-3,3 <u>+</u> I,0	I2,0 <u>+</u> I,4	5,2 <u>+</u> I,6
P _{II}	-5,8 <u>+</u> 0,8		Ρ"	-0,4 <u>+</u> 0,7	23,5 <u>+</u> I,0	29,8 <u>+</u> I,0
Ριз	I,5 <u>+</u> I,3		PIB	6,I <u>+</u> I,I	-3,2 <u>+</u> 0,7	8,4 <u>+</u> I,0
D_{13}	-5,7 <u>+</u> 0,3		D13	-3,2 <u>+</u> 0,5	5,9 <u>+</u> 0,6	-0,4 <u>+</u> 0,7
D15	I5,8 <u>+</u> 0,8		D15	I5,2 <u>+</u> 0,6	I,6 <u>+</u> 0,6	-0,7 <u>+</u> 0,6
F 15	-0,2 <u>+</u> 0,3		F15	0,9 <u>+</u> 0,3	1,7 <u>+</u> 0,3	-3,2 <u>+</u> 0,5
F 17	2,5 <u>+</u> 0,7		F ₁₇	-0,6 <u>+</u> 0,7	-0,6 <u>+</u> 0,3	-0,6 <u>+</u> 0,4
M	43,7		M	9I,I	74,3	73,4
M	52		<u>M</u> = 53			
	<u> </u>	JI				

5

i

Å

c: