

1967.

P1 - 3375

12/11.67

Г. Варденга, М. Журавлева, Д. Котляревский, В. Новиков, Э. Оконов, Г. Тахтамышев, Л. Чхаидзе

ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ К° - МЕЗОНОВ СО СРЕДНЕЙ ЭНЕРГИЕЙ 120 МЭВ С ЯДРАМИ Аг., Сu, Pb

P1 - 3375

Г. Варденга, М. Журавлева, Д. Котляревский, В. Новиков, Э. Оконов, Г. Тахтамышев, Л. Чхаидзе

ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ К° - МЕЗОНОВ СО СРЕДНЕЙ ЭНЕРГИЕЙ 120 МЭВ С ЯДРАМИ Ar, Cu, Pb

Направлено в ЯФ

Институт физики АН ГССР

5064/, yp

В работе определено сечение рождения $\Lambda^{\circ}(\Sigma^{\circ})$ -гиперонов K_{L}° -мезонами со средней энергией 120 Мэв на ядрах Ar , Γ_{a} , Pb и проверена модель каскадного взаимодействия частиц. Распады и взаимодействия K_{L}° -мезонов регистрировались в камере Вильсона, помещенной в магнитное поле со средней напряженностью ≈ 8000 эрстед. Камера размером 100х60х17 см, наполненная аргоном при давлении 1,25 ат, была расположена на расстоянии 6,2м от внутренней мишени синхрофазотрона ОИЯИ. Поток K_{L}° -мезонов составляет угол 90 - 1,5° с пучком ускоренных протонов. Описание установки и методика обработки треков распадных частиц приведены в работах $^{/1,2/}$.

Зарегистрировано ≈ 4500 K_L^0 -распадов на заряженные частицы. Энергетический спектр K_L^0 в месте расположения установки приведен на рис. 1. Для изучения взаимодействия K_L^0 -мезонов в разных экспозициях в камеру помещался поглотитель: а) медная пластина толшиной 26,7 гр/см²; б) свинцовая- 5,8 гр/см²; в) две свинцовые пластины по 5,8 гр/см² каждая.

Число К⁰_L -распадов, зарегистрированных в каждой экспозиции, равно 1203, 1654 и 808 соответственно (фон от ложных событий вычтен).

Изучалось рождение 10 - гиперонов в реакции

$$K_{L}^{0} + N \rightarrow \Lambda^{0} (\sum_{i=1}^{n} \gamma_{i}) + n \pi$$
(1)

В камере наблюдался распад ^{∧°} → р π[−], при этом условия эксперимента таковы, что подавляющее большинство распадов идентифицируется визуально, так как при импульсе ^P ≤ 700 Мэв/с протон чётко отличается от π – и µ -мезонов по ионизации. При идентификации ^{∧°} -гиперона требовалось соответствие кинематике распада ^{∧°} - р + π[−]и наличие у положительной частицы протонной плотности почернения. Чтобы обеспечить надежность измерений и идентификации для окончательного анализа отбирались распады, удовлетворяющие следующим критериям:

вершина V⁰ -события лежит в эффективном объеме камеры;

2) импульс положительной частицы Р ≤ 700 М.эв/с;

3) угол наклона трека к плоскости фотографирования $a_{+} \leq 45^{\circ}, a_{-} \leq 60^{\circ}$; 4) из рассмотрения исключались распады с треками, параллельными базе фотоаппарата $\theta_{+} \Rightarrow (90^{\circ} \pm 20^{\circ}), \quad \theta_{-} = (90^{\circ} \pm 10^{\circ})$ ($\theta_{-} \pm$ угол вылета вторичной частицы).

Эффективный объем камеры определен по распределению x, y, x координат точек распада K_L^0 -мезонов из данных так называемой "невыборочной статистики" (на части пленок были измерены все V^0 -события без выборки для определения точек распределения распада и угловых характеристик распадных частиц). Условия освещения в эффективном объеме постоянны. При $a_+ \leq 45^0$ почернение трека пропорционально его ионизации. На угол вылета π^- -мезона (α_-) наложено меньшее ограничение в силу того, что импульс π^- меньше ($P_- < 200$ Мэв/с).

Перечисленным критериям удовлетворяют 67 Λ° , рожденных в Съ, и 55 -в Рь . Рассмотрим возможные источники фона Λ° -распадов:

а) Взаимодействие нуклонов пучка с ядрами в пластине типа

$$N + N \rightarrow \Lambda^{\circ} (\Sigma^{\circ}) + K^{\dagger} (K^{\circ}) + N.$$
⁽²⁾

Порог этой реакции равен ≈ 2,3 Гэв/с. На рис. 2 показан импульсный спектр протонов отдачи, образованных нейтронами пучка. Как видим, импульс нуклонов меньше порога реакции (2).

 б) Рождение ¹ -гиперонов ¹ К⁰_L -мезонами в аргоне в реакции
 (1) и двухлучевые звезды (р. ⁴), образованные нейтронами. На всем материале было зарегистрировано два распада ¹ ⁰ ,

удаленных от стенок и пластин на расстояние большее, чем 3 средних распадных пробега Л[°]. Это либо Л[°], генерированные К[°]_L -мезонами в безлучевой звезде, либо звезда, которая имитирует распад Л°→р + π -. Оценки показывают, что первый источник является преобладающим.

Для иллюстрации правильности идентификации мы оценили массу нестабильной частицы и ее время жизни по 122 случаям. Получили $M_{\Lambda^0} = (1115,7 \pm 4,1)$, $r_{\Lambda^0} = (2,92 \pm 0,31) 10^{-10}$ сек, что в пределах ошибок согласуется с последними данными /3/.

Для определения сечения рождения Λ° (Σ°) нужно восстановить поток K_L° -мезонов, прошедший через пластину в эффективном объеме камеры, а также оценить действительное число Λ° (Σ°), родившихся на ядрах Си и Рь

Поток был рассчитан по числу K_L^0 -распадов с привлечением поправок, полученных по "невыборочной статистике". Из "невыборочной статистики" было определено -какая часть K_L^0 -мезонов распадается в эффективном объеме камеры и азимутальная поправка для этой совокупности событий. Далее учитывался распад K_L^0 в пластине и в нечувствительной области 0,5 см за пластиной. Их этих данных было определено число K_L^0 , распавшихся на заряженные частицы. Зная вероянность нейтральной моды $K_L^0 + 3\pi^0$ по отношению ко всем "заряженным распадам" $-(K_{e3}, K_{\mu3}, K_{8\pi})$ $P = \frac{P(K_L^0 + 3\pi^0)}{P(K_L^0 (заряж.))} = 0.30 \pm 0.03$

и средний распадный пробег с учётом спектра $\lambda_{K_{L}^{0}} \approx (12,32^{+}_{-}0,62)$ м ($r_{K_{0}} = 5,03^{+}0,25$) 10^{-8} сек^{/3/}), мы оценили поток K_{L}^{0} -мезонов, прошедших через пластину Си и Рь $J_{Cu} = (4,38^{+}0,52)x10^{-4}$, $J_{Pb} = (6,89^{+})^{-6}$, $J_{10} = (6,89^{+})^{-6}$

Δ J _{РЬН Сч} включают в себя как статистические ошибки Δ В и Δ г так и неточности проправочных коэффициентов.

Основная трудность в восстановлении истинного числа родившихся Λ (ξΣ) состоит в учёте вторичных эффектов в ядре и далее в пластине, так как наблюденные Λ⁰ рождены не непосредственно К⁰_L-мезонами, а образованы от распадов Σ[°] и конверсии Σ[±] и Λ[°] в ядре.

х) В работе было показано, что примесь других распадов 1%.

Для учёта вторичных эффектов и получения поправок на распад Λ° в пластине (средний распадный пробег $\Lambda^{\circ} \approx 2,7$ см) и на примененные критерии отбора взаимодействие K_{L}° -мезонов с ядром моделировалось по методу Монте-Карло. В основу расчёта была заложена каскадная модель взаимодействия K_{L}° -мезонов и вторичных странных частиц с нуклонами ядра. Эта модель хорошо описывает эксперименты по рождению обычных и странных частиц π -мезонами и нуклонами в широком интервале энергий $^{/4,5,6/}$. Ядро рассматривается как вырожденный Ферми-газ, заполняющий сферу радиуса $R_{Cu} = 5!$, $R_{pb} = 7!$ $^{/7/}$. При этом учитывается фермиевское движение нуклонов в ядре и принцип Паули.

Для упрощения расчётов при взаимодействии К , Л°, Σ с нуклоном были рассмотрены только реакции с рождением двух частиц в конечном состоянии:

$K_{L}^{0} + N \rightarrow K_{L}^{0} + N$		упругое	рассеяние	и перезарядка
$\Lambda^{\circ} + \pi$				
$\Sigma^{\pm} + \pi$				(3)
$\Sigma^{\circ} + \pi$				
$\Lambda^{\circ} + N \rightarrow \Lambda^{\circ} + N$				
$\Sigma^{\circ} + N$				(4)
Σ_+ N }	порог	640 Мэв	/c	
$\Sigma^{\circ} + N \rightarrow \Sigma^{\circ} + N$				
Λ [°] + N				(5)
Σ^+ + N				
$\Sigma^{\circ} \rightarrow \Lambda^{\circ} + \gamma$				

$$\Sigma^{\pm} + N \rightarrow \Sigma^{\pm} + N$$

$$\Lambda^{\circ} + N \qquad (6)$$

$$\Sigma^{\circ} + N$$

При наших энергиях K_L^0 -мезонов (спектр на рис. 1) в KN взаимодействии вклад от процессов с рождением трех частиц (Y π π) не более ≈ 10% от двухчастичных конечных состояний, причём соотношение между $\Lambda^0 u \Sigma$ в (Y π π) равно 8:2^{/8/}. Погрешность, допущенная пренебрежением трехчастичными конечными состояниями, в основном приводит к небольшому изменению проправки на распад, что мало влияет на результат. В реакциях (4,5,6) вклад от процессов с рождением дополнительного

тезона пренебрежимо мал.

Дальнейшей судьбой ⁷ -мезона и нуклона мы не интересовались, так как их энергия не достаточна для рождения странных частиц. В расчете использовались полные сечения поглощения K_{L}^{0} -мезонов в Си и Рь, полученные в настоящей работе, данные о сечениях взаимодействия $K^{+} - и$ K^{-} -мезонов с нуклоном (через 50 Мэв) и веса отдельных каналов реакции из работ ⁽⁸⁴¹²⁾. Сечения реакций (4) были заданы для Λ° -гиперонов в интервале импульсов 0-300, 300-640, 640-880 и $P_{\Lambda^{\circ}} > 880 \text{ Мэв/с}$ (13 ÷ 18/ , а (5,6) для Σ -гиперонов с импульсом 0-150, 150-500, 500-1500 Мэв/с^(19‡22).

В результате моделирования было определено число $\Lambda^{\circ}(\Sigma^{\circ})$, вышедших из ядра, и число Λ° , прошедших по критериям отбора. Из этих данных были получены следующие поправочные коэффициенты для Λ° : $\epsilon_{Cu} = 9,3^{+}0,8; \ \epsilon_{Pb,1}=5,6^{+}0,5; \ \epsilon_{Pb2} =7,4^{+}0,6.$ Было "разыграно" $5x10^{4}$ первичных КN -взаимодействий. Ошибка расчёта определялась в основном ошибками в сечениях элементарных процессов.

В результате были получены следующие значения сечения рождения х)

$$\Lambda^{\circ}(\Sigma^{\circ})$$
 ha (u H Fb; $\sigma_{Cu}(\Lambda^{\circ}, \Sigma^{\circ}) = (58 \pm (0) \text{ MG}, \sigma_{Du}(\Lambda^{\circ}\Sigma^{\circ}) = (225 \pm 36) \text{ MG}$

На рис. З приведены распределения по импульсу Р и углу вылета θ_{Λ^0} для Λ° , зарегистрированных в данном эксперименте и полученных моделированием. Сравнение этих распределений дает удовлетворительное согласие, что указывает на справедливость каскадной модели для наших условий.

Расчёт показывает, что в ядре ^{Св} в среднем происходит 3-4 взаимодействия, а в Рb - 5-6 взаимодействий.

Нами была также сделана оценка сечения рождения Λ° в ядре At . Было зарегистрировано 12 Λ° , удаленных от стенок и пластин на расстояние большее, чем 3 средних распадных пробега Λ° . В 10 случаях имеется звезда коррелированная Λ° х), причем, в 9 случаях направление полета Λ° составляет с направлением на звезду угол не более 5° и лишь в одном случае угол отклонения ≈ 10°(это может иметь место и вследствие плохой измеримости следа отрицательной частицы). • Оставшиеся две Λ° не связаны со звездой; это либо Λ° , образованные

к⁰_L -мезонами в безлучевой звезде в Ar (сечение рождения в безлучевой звезде примерно на порядок меньше), либо двухлучевые звезды
(p, π⁻), имитирующие распад Λ°→ p + π⁻. Ожидаемая примесь от таких звезд мала. Для подсчёта числа Λ° (Σ°) , генерированных в Ar , мы ввели геометрические поправки и поправку на нейтральную схему распада Λ°→ в π⁰. Поток, прошедший через камеру, равен J_K° =(1,47⁺,0,17) 10⁵, отсюда сечение генерации Λ°(Σ°) в Ar

получается равным σ_{Ar} ($\Lambda^{\circ}, \Sigma^{\circ}$) = (44+15) мб.

В работе^{/23/} получено сечение рождения (Λ °, Σ °) K_L^0 -мезонами с такой же средней энергией, как и в нашем эксперименте, во фреоне (среднее значение $\Lambda \approx 22$): $\sigma_{Fr} = (\Lambda^\circ, \Sigma^\circ) = (29^+7)$ мб.

На рис. 5 показана зависимость σ(Λ°,Σ°) от А. Экспериментальные точки описываются линейной зависимостью от А, вида

 σ ($\Lambda^{\circ}, \Sigma^{\circ}$) =4,7+0,97A.

В заключение авторы благодарят научных сотрудников:Ю.Лукстыньша, А.Мествиришвили, Д.Нягу, Н.Петрова, В.Русакова и У Цзун-фаня за по-

x) В среднем кадре наблюдалось 5 звезд.

мощь в работе; В.Мальцева, З.Манджавидзе, Н.Ройнишвили, В.Тонеева за полезные советы; О.Благонравову, И.Кухткну за помощь в составлении программы. Авторы благодарны группе техников и лаборантов ,принимавших участие в эксплуатации установки и обработке экспериментальных данных.

ЛИТЕРАТУРА

- 1. Д.Котляревский, А.Мествиришвили, Д.Нягу и др. ЯФ. 1, вып.6, 1035(1965)
- 2. М.Аникина, Г.Варденга, М.Журавлева и др. ЯФ.2. вып.3, 471(1965)
- 3. M. Roos. Preprint CERN 10.4.66
- 4. N.Metropolis, R. Bivins, M.Storm et al. Phys. Rev. 110, 204 (1958)
- 5. В.Беляков, А.Бояджиев, Н.Вирясов и др. Преприит ОИЯИ Р-1452,

Дубна, 1963.

- 6. Е.Богданович, Т.Добровольский, И.Ивановская и др. ЯФ.3, вып.1,73 (1966)
- L.Elton. Nuclear Sizes, (pub. Oxford Univ.) 1962 8 P. Bastien, J.Berge, O.Dahl et al. International Conference on High Energy Physics at CERN p.373, 1962.
- g.S.Goldhaber, W.Chinowsky, G.Coldhaber et al. Phys. Rev. Lett., 9, 135 (1962)
- 10. B. Bhowmik, D. Goyal, P. Jain et al. Nuov. Cim. 31, 716 (1964)
- 11. J.Kim. Phys. Rev. Lett., 14, 29 (1965)
- 12.M.Sakitt, T.Day, R.Glassen et al. Phys. Rev., 139, 3B, 719 (1965)
- 13. G.Abrams and B.Sechi-Zorn, Phys. Rev. 139, 2B, 454 (1965)
- 14. F.Crawford, M.Creati, M.Good et al. Phys. Rev. Lett., 2, 174 (1959)
- 15. B.Sechi-Zorn, R.Burnstein, T. Day et al. Phys.Rev.Lett. 13, 282 (1964)
- 16. G.Alexander, O.Benary, U.Karshon et al. Phys.Let. 19, 755 (1966)
- 17. T.Groves, Phys. Rev. 129, 1372 (1963)
- 18. P.Beilliere, M.Gomez, A.Lloret et al. Phys. Lett. 12, 350 (1964)
- 19. R.Burnstein, Univer, of Marilend, Technical Report 469 (1965)
- 20, H.Dosch, R.Engelmann, H.Filthuth. Phys.Lett. 14, 162 (1965)
- 21. F. Russel Stannard, Phys.Rev. 121, 1513 (1961)
- 22. V.Bisi, G.Borreani, R.Cester et al. Phys .Lett. 10, 252 (1964).

23. А.Алексанен, А.Алиханян, И.Вартазарян и др. ХП Международная конференция по физике высоких энергий Дубиа 1964. т.2 стр.102.

Рукопись поступила в издательский отдел

8 июня 1967 года.

Рис. 3. Импульсный спектр Λ° -гиперонов, образованных К ${}^{\circ}$ -мезонами в Си и в Рь (б). Пунктиром показано распределение для Λ° , полученных в результате моделирования и удовлетворяющих критериям отбора.

Рис. 4. Распределение Λ° по углам вылета $\theta_{\Lambda^{\circ}}$ в Са (а) и в Рь (б). Пунктир-результат моделирования.

Рис. 5. Зависимость сечения рождения Л°(∑°) К⁰ -мезонами со средней энергией 120 Мэв от атомного номера.