

Ю.А. Батусов, С.А. Бунятов, В.М. Сидоров, В.А. Ярба

ОБРАЗОВАНИЕ ГЕЛИЯ -8 ПРИ ЗАХВАТЕ П⁻-МЕЗОНОВ ЯДРАМИ УГЛЕРОДА, АЗОТА И КИСЛОРОДА

1967.

NACUAC

P1 - 3372

Ю.А. Батусов, С.А. Бунятов, В.М. Сидоров, В.А. Ярба

ОБРАЗОВАНИЕ ГЕЛИЯ -8 ПРИ ЗАХВАТЕ П~-МЕЗОНОВ ЯДРАМИ УГЛЕРОДА, АЗОТА И КИСЛОРОДА

Направлено в ЯФ

5200/3 mp.

Впервые вопрос о возможности сушествования ¹¹е⁸ был рассмотрен Я.Б.Зельловичем^{/1/} и В.И.Гольданским^{/2/} в 1960 г. Используя экспериментальные данные относительно энергии спаривания нейтронов в легких ядрах, они пришли к выводу о большой вероятности сушествования изотопа ^{Не⁸}, стабильного по отношению к испусканию нейтронов. Однако строгого экспериментального доказательства сушествования ¹¹е⁸ до 1965 года не было. Имелось сообщение^{/3/} о возможном наблюдении двух случаев образования ¹¹е⁸ в фотоэмульсии, которое не было достаточно надежным с экспериментальной точки зрения^{/4,5/}. Результаты работы^{/6/} были также сомнительными^{/4,7/}, и впоследствии была показана их ошибочность^{/8,9/}.

В 1966-67 г.г. опубликован целый ряд экспериментов^{/3-14/} по обнаружению ядра Пе⁸ и изучению некоторых его свойств. Настоящая работа является продолжением работы^{/10/}, в которой сообщалось о непосредственной регистрации актов рождения и распада ядер Не⁸, образованных при захвате остановившихся ^{π-}-мезонов ядрами углерода и кислорода. В данной работе определена более точно масса Не⁸ и относительные вероятности образования Не⁸ на различных ядрах в фотоэмульсин.

Известно, что ядро ^{Не⁸ претерпевает распад по следующим Двум схемам:}

1. He ⁸ (0⁺) $\stackrel{\beta^-}{\to}$ Li ⁸^{*} (0,978 M \rightarrow B ,1⁺) $\stackrel{\gamma^-}{\to}$ Li⁸ $\stackrel{\beta^-}{\to}$ Be ⁸^{*} (2,9 M \rightarrow B,2⁺) \rightarrow 2 He⁴;

2. He⁸ (0⁺) $\stackrel{\beta^{-}}{\rightarrow}$ Li^{8*} (3,22 M \rightarrow B, 1⁺) \rightarrow Li⁷ + n.

Первая из этих схем особенно удобна для регистрации в фотоэмульсии, т.к. в этом случае на конце следа Не⁸ должны наблюдаться два следа электронов и два направленных в противоположные стороны и равных по длине следа а -частиц (Т-образные следы с двумя электронами, в отличие от Т-образных следов Li⁸ и B⁸, которые сопровождаются одним следом электрона или позитрона, соответственно).

При захвате *п*-мезонов легкими ядрами С, N, О в фотоэмульсии Не⁸ может наблюдаться в следующих реакциях, дающих двух,-трех – и четырехлучевые звезды:

1.
$$\pi^{-} + 0^{16} \rightarrow He^{8} + He^{8} + He^{8}$$
,
2. $\pi^{-} + C^{12} \rightarrow He^{8} + He^{8} + He^{8} + He^{8}$,
3. $\pi^{-} + N^{14} \rightarrow He^{8} + He^{8} + He^{8}$,
4. $\pi^{-} + 0^{16} \rightarrow He^{8} + Be^{7} + H^{1}$,
5. $\pi^{-} + C^{12} \rightarrow He^{8} + H^{2} + H^{1} + H^{1}$,
6. $\rightarrow He^{8} + H^{1} + H^{1} + H^{1} + H^{1}$,
6. $\rightarrow He^{8} + He^{8} + He^{2} + H^{1}$,
7. $\pi^{-} + N^{14} \rightarrow He^{8} + He^{8} + H^{2} + H^{1}$,
8. $\rightarrow He^{8} + He^{4} + H^{1} + H^{1}$,
9. $\rightarrow He^{8} + He^{3} + H^{1} + H^{1}$,
10. $\pi^{-} + 0^{16} \rightarrow He^{8} + Li^{6} + H^{1} + H^{1}$,
11. $\rightarrow He^{8} + He^{4} + He^{3} + H^{1}$,
12. $\rightarrow He^{8} + He^{3} + He^{8} + He^{3} + H^{1}$,
13. $\rightarrow He^{8} + He^{8} + He^{8} + He^{8} + H^{1}$,

(Реакции с большим числом заряженных частиц не приводятся).В рассматриваемых реакциях происходит полный развал ядер мишени. Энергия, выделяющаяся при захвате и "-мезонов, точно известна. Это позволяет провести кинематический анализ наблюдаемых событий.

Эмульсионные камеры размером 10 х 5 х 2,5 см³, составленные из слоев эмульсии толщиной 600 микрон типа НИКФИ-БР (чувствительной к релятивистским частицам), облучались π^- -мезонами с энергией 80 Мэв на синхроциклотроне Лаборатории ядерных проблем ОИЯИ. Плотность облучения составляла 2.10⁵мез/см². Мезоны тормозились до остановки в середине камеры. Зона остановок π^- -мезонов шириной в 1 см просматривалась под микросконом с увеличением 200 Х, и регистрировались σ -звезды с Т-образными

следами. Просмотрено 7 камер, и зарегистрировано 17267 таких случаев. Среди них при повторном просмотре с увеличением 1350 Х производился поиск событий с двумя электронными следами на концах Т-образных следов. При этом руководствовались следующими критериями отбора:

1. Электроны должны быть релятивистскими.

2. Расстояние от окончания следа ^{Це 8} до первого зерна электронного следа не должно превышать утроенного среднего расстояния между зернами. Относительное число таких разрывов составляет 5%^{/15/}.

3. Следы электронов должны продолжаться либо до остановки в камере, либо до выхода за ее пределы.

Было зарегистрировано 16 таких событий. Два из них являются звездами трехлучевого, 13 случаев - четырехлучевого и один случай - пятилучевого типа.

Для каждого события проведен кинематический анализ, результаты которого приведены в таблице. О первых трех случаях сообщалось ранее^{/10/}. Из таблицы видно, что восемь случаев удовлетворяют кинематике реакций без испускания нейтрона. В этих случаях измерена масса атома He⁸ и избыток массы М-А. Среднее значение по этим измерениям М-А = (31,0 ±0,4) Мэв. Эта величина хорошо согласуется со значением, полученным нами ранее^{/10/}, и результатами работы^{/11/}, в которой эта же величина, измеренная по 10 отсчётам в реакции IIe⁴ + Mg²⁶ → He⁸ + Mg²².

найдена равной (31,65 ± 0,12) Мэв. Семь случаев идентифицированы как реакции с испусканием одного дополнительного нейтрона. В каждом из этих случаев определена масса нейтрона, среднее значение которой получено равным (941,5 ± 2,2) Мэв. Значение массы атома Не⁸ принималось равным М=7482,5 Мэв. В одном случае не удалось провести идентификацию канала реакции, т.к. одна частица вышла за пределы камеры и пробег ее не измерен точно.

На основании зарегистрированных случаев можно определить относительные вероятности образования Πe^8 при захвате π^- -мезонов на различных ядрах. Как видно из таблицы, 13 случаев отнесены к реакциям на углероде и по одному случаю – к реакциям на азоте и кислороде. О верхней границе относительной вероятности реакции (1) сообщалось в работе^{/16/}. Аналогично работе^{/16/} находим, что зарегистрированное число σ -звезд с Т-образными следами соотвествует 3,27·10⁶ захватам π^- -мезонов в легких и 5,81·10⁶ захватам π^- -мезонов в тяжелых ядрах. При этом относительные числа за-

-5

хватов *п* -мезонов отдельными компонентами легких ядер С.N., О составляют 49,4%; 14,6% и 36% соответственно.

Используя эти данные, находим

$$W_{1} = \frac{\pi^{-} C^{12} \rightarrow He^{8} + \dots}{\pi^{-} C^{12} \rightarrow Bce Kahanah} = (8,0 -2,2) 10^{-6}$$

$$W_2 = \frac{\pi - 0^{16} \rightarrow He^8 + ...}{\pi - 0^{16} \rightarrow Bce KaHaлы} ≈ 0.8 10^{-6}$$

$$W_{3} = \frac{\pi^{-} N^{14} \rightarrow He^{8} + ...}{\pi^{-} N^{14} \rightarrow BCE \text{ каналы}} \approx 2,0 \ 10^{-6}$$

Здесь приводятся вероятности образования He⁸, который распадается по схеме 1. Согласно данным работы^{/8/} доля распадов по этой схеме составляет 88%.

Можно отметить, что образование Не⁸ при захвате *п*-мезонов легкими ядрами с большой вероятностью сопровождается вылетом еще трех заряженных частиц. При испускании же Li⁸, наиболее вероятно, дополнительно вылетают только две заряженных частицы. Это связано с тем, что Li⁸ уносит больший заряд.

С точки зрения теории прямых ядерных реакций образование Не⁸ протекает путем захвата и -мезона ассоциацией нуклонов в ядре^{18,19/}. В этом случае на углероде, например, виртуальной частицей должно быть ядро ^{Ве⁴}. Представляет интерес исследование вероятности существования таких ассоциаций^{16,20/}.

Из факта существования β -активного ядра He⁸ с массой атома М_{He⁸} = (7482,5 ± 0,4) Мэв следует, что энергия связи тетранейтрона (если он существует /17/) не превышает (3,7 ±0,4) Мэв. В противном случае He⁸ распадался бы на He⁴ + n⁴.

Авторы благодарны проф. В.П.Джелепову и проф. Л.И.Лапидусу за интерес и внимание к работе. Литература

- 1. Я.Б.Зельдович. ЖЭТФ, <u>38</u>, 122 (1960).
- 2. В.И.Гольданский. ЖЭТФ, <u>38</u>, 1637 (1960).
- 3. О.В.Ложкин, А.А.Римский-Корсаков. ЖЭТФ, <u>40</u>, 1519 (1961).
- 4. А.И.Базь, В.И.Гольданский, Я.Б.Зельдович. УФН, 85, 445 (1965).
- 5. Н.А.Власов. УФН, <u>89</u>, 511 (1966).
- 6. B.M.K.Nefkens. Phys. Rev. Lett., 10, 243 (1963).
- 7. A.M.Poskanzer et al. Phys. Rev. 138, 1B, B18 (1965).
- 8. A.M.Poskanzer et al. Phys. Rev. Lett., 15, 1030 (1965).
- 9, B.M.K.Nefkens et al. Nuclear Phys., 88, 523 (1966).
- 10. Ю.А.Батусов, С.А.Бунятов, В.М.Сидоров, В.А.Ярба. Препринт ОИЯИ, E-2774, Дубна 1966. Phys. Lett., <u>22</u>, 487 (1966).
- 11. J.Cemy et al. Phys. Rev. Lett., 16, 468 (1966).
- 12. S.L.Whetstone and T.D.Thomas. Phys. Rev. Lett., 15, 298 (1965).
- 13. G.C.Deka et al. Nuovo Cim., 45 B, 63 (1966).
- 14. M.Sowinski et al., Report INR No. 765 /1A /PL, 1966, Warsaw.
- 15. P.H.Fowler and D.H.Perkins. Phil. Mag., <u>46</u>, 587 (1955).
- Ю.А.Батусов, С.А.Бунятов, В.М.Сидоров, В.А. Ярба. Препринт ОИЯИ, Р-330, Дубна, 1967; ЯФ (в печати).
- Ю.А.Батусов, С.А.Бунятов, В.М.Сидоров, В.А.Ярба. Препринт ОИЯИ, Р-3306, Дубна, 1967; ЯФ (в печати).
- 18. И.С.Шапиро, В.М.Колыбасов. ЖЭТФ, <u>44</u>, 270 (1967).
- 19. Н.С.Зеленская, Ю.Ф.Смирнов, Н.П.Юдин. Известия АН СССР, <u>29</u>, 186 (1965).
- 20. П.Береги, Н.С.Зеленская, В.Г.Неудачин, Ю.Ф.Смирнов. Nucl.Phys., <u>66</u>, 513 (1966).

7

Рукопись поступила в издательский отдел в июня 1967 года.

			7	αδлица	Ĩ
			Ĺ	Случай	Nº 1
Номер следа	Пробег [микрон]	Угол [град.]	Энергия [Мэв]	Цденти- фикация	Реакция, масса атома Не ^в , избыток массы
1	44,8± 1,1	٥	10,9±0,1	He 8	$\pi^- C^{\prime 2} \rightarrow He^8 + He^3 + H^1$
2.	524 ± 7	219 ± 1, 7	33,9±0,3	He ³	M = (7481,7 ± 3,1) Мэв
3	>1320	103,5±15	41,7±3,0	H'	M-A=(30,2±3,1) Мэв

Случай №2

1	7,9±1,0	0	2,7 ± 0,3	He ⁸	$\pi^- C^{12} \rightarrow He^8 + H^2 + H^1 + H^1$
2	1823±20	136,1±2,4	26,5±0,3	H²	M = (7480.0 ± 1.1) Мэв
3	1880±27	215,2±2,4	20,1±0,2	H^{t}	M-A=(28.5±1,1) M3B
4	4626±80	317,1±2,4	33,6±0,5	H ¹	(, ,,,,

Случай №3

1	18,1 ± 1,0	0	5,4±0,3	He ⁸	$\pi^- 0^{16} \rightarrow He^8 + H^1 + He^4 + He^3$
2	5208±75	89,3±1,9	36,0±0,3	Η1	М = (7482,6 ± 1,0) Мэв
3	383±4,0	211,4±2,1	32,0±0,5	He ⁴	M-A=(31,1 ± 1,0) Мэв
4	33,1 ± 1,5	320,4±1,8	6,2 ± 0,3	He ³	

Случай л	N:	4
----------	----	---

Номер следа	Пробег [микрон]	Угол [град.]	Энергия [Мэв]	Иденти- Фикация	Реакция, масса атома Не ⁸ , избыток массы
1	6,8 ± 1,0	0	2,6 ± 0,3	He ⁸	<i>T</i> (⁻ C ¹² → He ⁸ + H ¹ + He ³
2	11200±140	72,3 t 1, 0	56,0±0,4	H ¹	М=(7483,2±1,0) Мэв
3	379±5	232±1,1	27,8±0,3	He ³	М-А=(31,7±1,0) Мэв

Случай №5

1	63,0±1,0	0	14,0±0,2	He ⁸	$\pi^{-}C^{12} - He^{8} + H^{1} + H^{2} + H^{1}$
2	571 ± 9	104,4± 1,5	10,0 ± 0,3	H1	м = (7482,5±1,0) Мэв
3	430±5	148,9±1,5	11,2 ± 0,3	H²	M-A=(31,0 ± 1,0) Мэв
4	8075±100	220,3±1,0	46,7±0,3	H	

Случай №6

1	10,0 ± 1,0	0	3,8±0,3	He ⁸	Tt - C12 - He8 + H1 + H1 + H2
2	983±16	119,7±1,2	13,7 ± 0,2	Н'	M = (7483,5 ± 1,0) Мэв
3	8490±100	155,2±1,0	48,0±0,4	H ¹	М-А=(32,0±1,0) Мэв
4	708±15	270,4±1,1	15,0 ± 0,2	H²	

Номер следа	Прабег [микрон]	Угол [град.]	Энергия [мэв]	Цденти- Фикация	Реакция, масса атома Не ⁸ , избыток массы					
1	44,0± 1,0	0	11,0 ± 0,3	He ⁸	$\pi^{-} C^{12} - He^{8} + H^{1} + H^{2} + H^{1}$					
2	463 ± 8	95,3±1,8	9,0 ± 0,2	H	М = (7483,0 ± 1,0) Мэв					
3	4690±70	144,0±1,0	45,0±0,5	H²	М-А=(31,5±1,0) Мэв					
4	1283±20	245,6±1,1	16,0±0,2	H						

Случай №7

Случай №8

1	18,0±1,0	0	5,8 ± 0,2	He ⁸	$\pi^{-} C^{12} - He^{8} + H^{1} + H^{2} + H^{1}$
2	790±13	128,5±1,2	12,0±0,2	H ¹	M=(7481.7 ± 1.0) Maß
3	753±6	253,6±1,1	15,5±0,2	H²	$M - A = (30.2 \pm 10) M_{3}B$
4	8630±100	246,5±1,0	48,4±0,4	H ¹	(00,2 = 1,2)

Случай №9.

Номер Следа	Пробег [микрон]	Угол [град.]	Энергия [Мэв]	Иденти- фикация	Реакция, масса нейтрона
1	11,5±1,0	0	4,1±0,3	He ⁸	$\mathfrak{II}^{-} \mathcal{C}^{12} \longrightarrow \mathcal{H}e^{\mathcal{B}} + \mathcal{H}^{1} + \mathcal{H}^{1} + \mathcal{H}^{1} + \mathcal{H}^{1}$
2	457 ± 7	33,2±1,5	4,0 ± 0,2	H	М"=(934,6±5,0) Мэв
3	5704±80	152,5±1,0	38,2±0,3	H ¹	
4	2755±40	247,7±1,0	25,2±0,2	H^{I}	

Номер следа	Пробег [микрон]	Угол [град.]	Энергия [Мэв]	Цденти- фикация	Реакция, масса нейтрона
1	6,8 ± 1,0	0	2,8±0,3	He ⁸	$\pi^{-} C^{12} \rightarrow He^{\theta} + H^{1} + H^{1} + H^{1} + \eta$
2	1476±22	29,2±1,0	17,5±0,2	H	Mn=(941,8±5,0) M9B
3	7490±100	207,5±1,0	44,7±0,3	H^{t}	
4	202 ± 7	205,0±2,0	5,5±0,2	H	× 3

Случай №11

1	16,0±1,0	0	5,1 ± 0,3	He ⁸	$\pi^{-} C^{12} - He^{8} + H^{1} + H^{1} + H^{1} + n$
2	3455±50	144,0±1,0	28,5±0,3	н 1	M, (941,9±5,0) M3B
3	1215±20	171,1 ± 1,0	15,6±0,2	H ¹	
4	213±7	239,8±2,6	5,6±0,2	H ¹	

Случай №12

1	34,4 ± 1,0	0	9,1±0,2	He ⁸	$\pi^- \mathcal{C}^{12} - \mathcal{H}e^{\theta} + \mathcal{H}^1 + \mathcal{H}^1 + \mathcal{H}^1 + \eta$
2	1200±20	82,1±1,0	15,5±0,2	H'	М"= (934,3±5,0) Мэв
3	4354±62	228,3± 1,0	32,8±0,3	H'	
4	232 ± 6,0	225,8±2,0	7,5±0,2	H ¹	

11

Случай №13

1

Нотер следа	Пробег (микрон)	Уго л [град.]	Энергия [Мэв]	Цденти- фикация	Реакция, масса нейтрона
1	16,2±1,0	0	5,1±0,3	He ⁸	$\pi^{-} C^{12} - He^{8} + H^{1} + H^{1} + H^{1} + \eta$
2	112 ± 5	47,8±3,5	3,8±0,2	H	Mn = (949,8±5,0) Məb
3	3176±48	159,7±1,0	27,3±0,2	H^1	
4	1176 ± 20	257,3±1,0	15,3±0,2	H^1	

Случай №14

1	25,5±1,0	0	7,5±0,3	He ⁸	$\pi^{-} c^{12} \rightarrow He^{8} + H^{1} + H^{1} + H^{1} + \pi$
2	825±13	116,7±1,5	12,5±0,2	н'	M= (947.4±5.0) M≥b
3	3278±46	243,4± 1,0	27,8± 0,3	H	
4	341 ± 6	118,9±2,0	7,2 ± 0,2	Н'	

Случай № 15

1	19,6±1,0	0	6,0±0,3	He ⁸	π ⁻ N ¹⁴ → He ⁸ +H ² +H ¹ +H ¹ +H ¹ +n
2	75 ± 4	86,9±1,5	3,9±0,2	H²	Mn=(940,6±5,0) M3B
3	300±6	102,1±2,0	7,0±0,3	H ¹	
4	103±5	209,2±2,0	4,0±0,3	H ¹	
5	361 ± 7	297,3±2,0	7,7±0,3	Η'	