ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Million and

Дубна

P1 · 3317

29/11-67

LABODATOPHS BUCOKINX THEPENN

1967.

И.А. Ивановская, Т. Канарек, Л.С. Охрименко, Б. Словинский, З.С. Стругальский, И.В. Чувило, З.Яблонский

3,1968,N2,

C. 39- 42

О ТОЧНОСТИ ОПРЕДЕЛЕНИЯ ЭНЕРГИЙ У - КВАНТОВ В КСЕНОНОВОЙ ПУЗЫРЬКОВОЙ КАМЕРЕ

P1 - 3317

5040/ 4 m

И.А. Ивановская, Т. Канарек*, Л.С. Охрименко, Б. Словинский**, З.С. Стругальский*, И.В. Чувило, З.Яблонский***

о точности определения энергий у - квантов в ксеноновой пузырьковой камере

Направлено в ПТЭ

OUNCHOUSEMENT EPOTION AND NEW LICENOIR BUT EMONIFOTERA

^{*} Институт ядерных исследований, Польша.

^{**} Варшавский Университет, Польша.

^{***} Лодзинский Университет, Польша.

В ранее опубликованных работах $^{/1,2,3/}$ описывались результаты разработки метода измерения энергии γ -квантов E_{γ} в ксеноновой пузырьковой камере в диапазоне энергий от 10 Мэв до 10 Гэв. Наиболее удобным на практике в интервале F_{γ} от 20 Мэв до 3 Гэв оказался способ определения E_{γ} по суммарному пробегу электронов R в созданной γ -квантом лавине, на длине ее развития d в камере $^{/2/}$.

В настоящей работе анализируются точности определения энергий у -квантов.

> Анализ разных факторов, влияющих на точность определения F_V с помощью зависимости E_V = f(R,d)

На точность определения E_{γ} с помощью кривых $E_{\gamma} = f(R,d)$ влияют в основном: а) флюктуации доли энергии γ -кванта, создавшего ливень, выделенной в виде ионизации на наблюдаемой в камере длине развития d , которые , в основном, связаны с флюктуациями в продольном развитии лавины; б) погрешности в измерении с помощью курвиметра проекций на плоскость фотографирования суммарных длин пробегов электронов Σt ; в) неопределенность минимальной длины следов, наблюдаемых в ливне электронов и позитронов t_{net} .

Флюктуации доли энергии у -кванта, выделенной в камере, зависят от того, полностью ли развивается ливень в области наблюдения или нет. Если развитие ливня происходит в камере частично, то в дальнейшем такой ливень будем называть обрезанным. В необрезанных ливнях неопределенности в R

Связаны с точностью измерения Σ г и с неопределенностью минимальной длины следов электронов и позитронов, наблюдаемых в камере. Если эта длина четко определена и во всех ливнях одинакова, независимо от их полной энергии, то ввиду независимости формы равновесного спектра электронов в ливне от энергии ливня ^{/4/} доля энергии, не подлежащая наблюдению, будет неопределенна лишь в такой степени, в какой неопределенны флюктуации доли полной энергии первичного у-кванта, которая не выделяется в камере на ионизационные потери ливневых электронов и позитронов. Не подлежащая прямому наблюдению доля энергии будет одинакова для всех ливней и учитывается в коэффициенте пропорциональности к ^{/2/} между суммарным пробегом электронов R и энергией у-кванта, вызвавшего ливень (Е_х = k R).

С целью определения минимальной наблюдаемой длины следов ливневых электронов был отобран 31 изолированный ливень с разной полной энергией E_{γ} , полностью развивающийся в камере. В каждом ливне на обоих снимках стереопары измерялись длины проекций следов t_1 всех наблюдаемых отдельных ливневых электронов в плоскости фотографирования. Ливни были разделены на четыре группы:

1-я группа содержала десять ливней с полным пробегом электронов R от 42 до 77 см;

2-я группа - шестнадцать ливней с R от 78 до 143 см;

3-я группа - четыре ливня с R от 144 до 260 см и

4-я группа - один ливень с R больше 260 см^{х)}.

Были построены распределения длин следов для каждого класса ливней. Все кривые нормированы в точке, соответствующей r = 2 см^{XX}. Результат показан на рис. 1.

Из распределения видно, что существует граничная длина проекции наблюдаемых электронов, не зависящая от полной энергии ливня и равная 0,5+0,2 см. Следовательно, наблюдаемая доля энергии у -квантов в необрезанных ливнях является практически одинаковой, не зависящей от полной

x) Этим наборам дивней соответствовали энергии, равные Е у ≂0,59 R (Е в Мэв, R в мм) 1,2

'хх) Все электроны с длинами следа, большими 2 см, наблюдаются с эффективностью, близкой к 100%.

энергии Е_γ. Ошибка в определении энергии у - квантов, возникающая из-за неопределенности г_{тар}, составляет ≈ 6%.

Ошибки измерения Σ_{f} с помощью курвиметра определялись следующим образом. Были отобраны ливни, которые полностью развиваются в камере. Значение R в них колебалось от 10 до 500 см. В средних условиях измерения проводились многократные измерения Σ_{f} одним и тем же измерителем. Обнаружено, что во всех ливнях среднее квадратичное отклонение составляет 3%. Аналогичные многократные измерения были сделаны и различными измерителями. Разброс не превышал 4%: В действительности в процессе обработки большого количества случаев используются двукратные измерения Σ_{f} . Приняв, что два измерения однозначны, если разница в Σ_{f} , определенных двумя измерителями, не больше 15%, средний разброс между двумя измерениями получаем на практике для большого количества случаев равным 6,5%.

Флюктуации в продольном развитии ливня могут значительно влиять на точность определения E_{γ} лишь в случаях, в которых определение E_{γ} производится по обрезанному ливню. Сведения о величине ошибки из-за флюктуаций ΔE_{γ}^{Φ} в таких случаях были получены путем измерения суммарных длин проекций пробегов электронов Σ т на разных длинах развития d в искусственно обрезанных ливнях с одинаковыми полными длинами пробегов R = const . В итоге была получена зависимость ошибок в определении R от длины развития d при разных значениях R₀, а затем ошибок $\Delta E_{\gamma}^{\Phi/2/}$. С ростом d значения ΔE_{γ}^{Φ} уменьшаются, но при малых d, т.е. в очень обрезанных ливнях ливнях ливнях, могут быть очень большими. На практике оказались пригодными для обработки лишь ливни, для которых $\Delta E_{\gamma}^{\Phi} < 30\%$.

2. О Зависимости $E_{\mu} = f(R, d)$

Набор кривых $E_{\gamma} = f(R,d)$ был построен экспериментально. Способ построения семейства этих кривых, также как и сами кривые, приведены в ранее опубликованной работе $\frac{2}{x}$.

^x)_{На этом же экспериментальном материале, но на большей статистике, вновь такие кривые были построены А.С. Мартыновым. В области кривых, пригодной для практического применения (обрезание не больше 30% Е_у), получены идентичные результаты.}

Набор кривых $E_{\gamma} = f(R,d)$ представляет собой однопараметрическое семейство

$$\mathbf{R}_{n} = \mathbf{R}[1 - \exp \{\phi(\mathbf{R}_{n}, \mathbf{d})\}],$$

где R₀ - полный пробег электронов и позитронов в необрезанном ливне с полной энергией E_y=kR₀ . С целью практического применения в процессе расчета большого количества случаев необходимо кривые E_y=f(R,d) записать в память электронно-счетной машины. Для этого семейство указанных кривых удобно аппроксимировать функцией

$$R = R \left\{ 1 - \frac{1}{2} \left(10^{-10} \right)^{0, 486 \left[(1qd)^{2} - \frac{1q(1, 5 - \sqrt{3}, 58 - 1qR_{0})}{0, 225} - 5, 5343 \right] + \frac{1}{2} \right\}$$

$$\begin{array}{c} -10 & 0,488 \left[(1 \text{ g d})^2 + \frac{6,215(3,58-1 \text{ g R}_0)}{1 \text{ g R}_0 + 0,77} - 6,0976 \right] \\ + 10 & & & & & \\ \end{array}$$

Значение R₀ получаем отсюда методом итерации. Нулевым приблажением является величина R . Процедура итерации продолжается п раз до тех пор, пока не будет выполнено условие

$$\frac{\left(\mathbf{E}_{\gamma}\right)_{n}-\left(\mathbf{E}_{\gamma}\right)_{n-1}}{\left(\mathbf{E}_{\gamma}\right)_{n-1}} \leqslant \mathbb{Q} \,. \tag{2}$$

С зависит от требуемой точности в определении энергии у -квантов. Практически достаточно взять 0 ≤ 0,01. Параметры функции (1) были подобраны численным методом с помощью машины GIER . Точность отображения набора экспериментальных кривых этой функцией в диапазоне энергий у -квантов от 20 Мэв до 2 Гэв составляет в среднем 1%. Максимальное отклонение не превышает 5%.

На рис. 2 показан набор кривых, рассчитанных по формуле (1) для нескольких эначений R₀. Кружками обозначены точки, полученные из эксперимента при соответствующих значениях R₀. Кривые, обозначенные 70, 80 и 90%, выделяют области на кривых, соответствующие 30, 20 и 10% обрезанию ливня в камере.

3. Анализ точности определения E, из зависимости E = f(R,d)

Выше были проанализированы лишь основные, поддающиеся анализу источники ошибок в определении энергии Е. В действительности на точность определения Е, может влиять еще ряд других причин. Например, мы измеряем курвиметром длины проекций следов сильно рассеянных частиц и лишь в среднем учитываем масштаб при переходе от проекций в плоскости пленки к действительным длинам в камере. Ошибки, вносимые такой процедурой, трудно учесть. Для определения точности измерения Е , лучше всего было бы измерить указанным методом Е, для у-квантов с известными энергиями. Однако мы не располагаем набором у -квантов с известными энергиями, поэтому проверка точности определения Е, будет состоять в проверке точности определения массы известной частицы, распадающейся на у -кванты, п⁰ -мезона. С этой целью были отобраны п⁰ - мезоны из п⁺ + Хе взаимодействий с одним вторичным Заряженным продуктом, след которого останавливался в камере, и двумя у -квантами. Такие взаимодействия можно интерпретировать как реакции типа п⁺+п → X + р на квазисвободных нейтронах ксенона ^{/5,6/}. Среди них легко выделить реакции п⁺+ п → п⁰+ р , используя функцию распределения случаев по углу 🤍 между у -квантами.

В лабораторной системе координат минимальный угол разлета γ -квантов $\Theta_{\gamma\gamma}^{\min}$, генерированных в реакции $\pi^+ + \pi \to \pi^0 + p \to \gamma + \gamma + p$ при 2,34Гэв/с, равен $6^{\circ}23'$. Около этого угла должно группироваться большинство наблюдаемых значений $\Psi_{\gamma\gamma}$. Минимальный угол $\Theta_{\gamma\gamma}^{\min}$ в случае рождения π^0 -частицы в реакции $\pi^+ + \pi \to \eta^0 + p$ составляет 26°20'. Если предположить, что нет в заметном количестве других частиц, распадающихся на 2 γ -кванта, значения масс которых находились бы в интервале масс от π_{π^0} до m_{η^0} , то можно хорошо выделить π^0 -мезоны, пользуясь критерием отбора: $\Theta_{\gamma\gamma} \leq 24^{\circ}$. При такой селекции возможный фон случаев от событий с числом γ -квантов, равным 4, не превышает 1%. В выделенных таким образом случаях с π^0 -мезонами измерялись полные пробеги \mathbb{R} электронов и позитронов в ливнях, созданных γ -квантами от распада $\pi^0 + 2\gamma$, а затем с помощью зависимости $\mathbf{E}_{\gamma} = f(\mathbf{R}, \mathbf{d})$ определялись энергии γ -квантов и вычислялись эффективные массы по известной формуле:

$$m_{\gamma\gamma} = \sqrt{2 E_{1\gamma} E_{2\gamma}} (1 - \cos e_{\gamma\gamma}).$$

На рис. З показано распределение случаев в реакции типа $\pi^{+} n \rightarrow X + p$ по углу $\mathfrak{E}_{\gamma\gamma}$. Кривая 1 является теоретически рассчитанной для π^{0} -мезонов, кривая 2-для η^{0} -мезонов. Распределение случаев, находящихся в районе $\mathfrak{P}_{\gamma\gamma}$ от $\mathfrak{E}_{\gamma\gamma}^{\min}$ до $\mathfrak{E}_{\gamma\gamma} = 24^{0}$, по эффективным массам показано на рис. 4. Проанализируем эти случаи с целью определения точности $\frac{\Delta E_{\gamma}}{E}$.

Ошибка в определении энергии $\frac{\Delta E_{\gamma}}{E_{\gamma}}$ выражается формулой

$$\frac{\Delta E_{\gamma}}{E_{\gamma}} = \sqrt{2} \sqrt{\frac{1}{n}} \sum_{i=1}^{n} \left(\frac{m_{\gamma\gamma} - m_{\gamma\gamma}^{(i)}}{\overline{m}_{\gamma\gamma}}^2 - \frac{1}{4} \sum_{i=1}^{n} \left(\frac{e_{\gamma\gamma_1}^{(i)} - e_{\gamma\gamma_2}^{(i)}}{\frac{e_{\gamma\gamma_1}^{(i)} - e_{\gamma\gamma_2}^{(i)}}{tg}} \right),$$
(3)

где $m_{\gamma\gamma}^{(1)}$ – значение эффективной массы в данном случае, а $e_{\gamma\gamma_1}^{(1)}$ и $e_{\gamma\gamma_2}^{(1)}$ – результаты первого и второго измерения угла $e_{\gamma\gamma}^{(1)}$. После подстановки соответствующих значений получается, что во всем наборе случаев $\frac{\Delta E_{\gamma}}{E} = 27\%$.

В рассматриваемом ансамбле случаев содержались и такие, в которых степень обрезания ливней была довольно большая, $\frac{\Delta R}{R} \approx 30\%$. Если из этого ансамбля выделить случая, в которых степень обрезания такова, что флюктуации в R не больше 15% (их было 88), то получим $\frac{\Delta E_Y}{R} = 23\%$.

В действительности точность в определении E_{γ} может быть лучше. Необходимо, однако, требовать, чтобы степень обрезания ливней была меньше. При таком обрезании, которое обеспечивает флюктуации в R не больше нескольких процентов, можно получить значение $\frac{\Delta E_{\gamma}}{E_{\gamma}} = 12 - 15\%$.

Подводя итоги, можно сказать, что то́чность измерения энергии Е_γ равна 12-35% в зависимости от степени обрезании ливня. Спектр у -квантов в случаях, выбранных для определения точности метода, простирается от 40 до 2400 Мэв.

Добавочной, качественной проверкой правильности измерения E_{γ} является анализ распределений эффективных масс $m_{\gamma\gamma}$, полученных из всевозможных $\gamma\gamma$ -комбинаций в случаях типа $\pi^+ + n \rightarrow X + p$, где K = 3,4,5,8. Подробнее остановимся на случаях с K = 4. Распределение всех 990 $\gamma\gamma$ -комбинаций в 165 случаях показано на рис. 5. Ожидаемое число эффективных масс со значе-

ниями, соответствующими π^{0} -мезонами, во всех уу -комбинациях должно быть не больше 1/3 от числа всех возможных комбинаций. После вычитания фона, полученного по методу Монте-Карло (на рис. 5 сплошная кривая), получается, что около 25% всех комбинаций могут соответствовать массам π^{0} -мезонов.

На рис. 6 показаны распределения уу -комбинаций во всех случаях с 2у, 3у, 4у, 5у и бу. В каждом из распределений получается четко выраженный пик, соответствующий массе т⁰ -мезона.

Литература

- З.С. Стругальский. Материалы совещания по методике пузырьковых камер. Препринт ОИЯИ № 796, Дубна 1961;
 Л.П. Коновалова, Л.С. Охрименко, З.С. Стругальский. Препринт ОИЯИ Р-700, Дубна 1961; ПТЭ № 6, (1961).
- 2. O. Czysowski, J. Danysz, Z. S. Strugalski, Acta Physica Polonica, 2 f, 509 (1968);

Препринт ОИЯИ Р-1144, Дубна 1962.

- 3. Б. Ничипорук, З.С. Стругальский. Препринт ОИЯИ № 1989, Дубна 1965.
- С.З. Биленький. Лавинные пропессы в космических лучах, Москва, Гостехиздат, 1948.
- 5. Z. S. Strugalski and T. Siemiarczuk, Phys. Lett. 13, 347 (1964).
- М.Дашкевич, Б. Словинский, З.С. Стругальский. Препринт ОИЯИ Р-2736, Дубна 1966. ЯФ (в печати).

Рукопись поступила в издательский отдел 10 мая 1967 г.

Рис. 1. Распределение длин г, следов е⁺ и е⁻ в ливнях с разными суммарными пробегами R : 1)Δ R = 42 - 77 см; 2) O R = 78-143 см; 3) × R = 144 - 260 см; 4) R > 260 см. A = a $\frac{N(>0)}{N(>2 \text{ см}_2)}$.

Рис. 2. Набор кривых E_y = f(R,d), рассчитанных по формуле (1). Кружками обозначены точки, полученные из эксперимента.

Рис. 3. Распределение случаев π⁺ + Хе взаимодействий с одной заряженной вторичной частицей и 2у -квантами (предполагаемая реакция π⁺ + п → X₂ →₂ p) по углу разлета у -квантов ⊕_{γγ} . 1 - теоретическая кривая для π⁰ -мезонов, генерированных в реакции π⁺ + п → π⁰ + р при 2,4 Гэв/с; 2 - теоретическая кривая для η⁰ -мезонов из реакции π⁺ + п → η⁰ + р при 2,4 Гэв/с.

Рис. 4. Распределение случаев с $e_{yy} \leq 24^{\circ}$ по эффективным массам m_{yy} .

Рис. 5. Распределение тур в случаях с 4 у -квантами. Сплошная кривая - фон, рассчитанной по методу Монте-Карло и нормированный в области эначений тур ≤ 90 Мэв.

Рис. 6. Распределение эффективных масс тур в случаях с разным числом К у -квантов: а) K=2; б) K=3, в) K=4, г) K=5, д) K=6,