

1967.

Р.Я. Зулькарнеев, В.С. Надеждин, В.И. Сатаров

ИЗМЕРЕНИЕ ПОЛЯРИЗАЦИИ ПУЧКА ПРОТОНОВ С ЭНЕРГИЕЙ 635 МЭВ

P1 - 3189

4824/1 up

ИЗМЕРЕНИЕ ПОЛЯРИЗАЦИИ ПУЧКА ПРОТОНОВ С ЭНЕРГИЕЙ 635 МЭВ

Объединенный институт ядерных исследований БИБЛИОТЕКА Поляризация пучка протонов с эпергией 635 Мэв, получаемого на синхроциклотроне Объединенного института ядерных исследований и используемого в опытах по рассеянию нуклонов, измерялась ранее неоднократно^{/1,2,3/} и равна 0,47±0,03^{x)}. Это значение поляризации следует отнести к пучку, использовавшемуся в экспериментах до 1960 г. В связи с тем, что для увеличения потока протонов апертура и длина выводного канала были увеличены в 1960 г., такие важные характеристики пучка, как поляризация и средняя энергия нуждаются в уточнении.

В настоящей работе приводятся результаты измерения величины поляриза-В настоящей работе приводятся результаты измерения величины поляризации пучка протонов, получаемого рассеянием на бериллиевой мищени внутри синхропиклотрона ОИЯИ и используемого в опытах по рассеянию, начиная с 1960 года.

Экспериментальная процедура измерения поляризации состояла в проведении упругого рассеяния исследуемого пучка водородосодержащей мишенью на угол θ и определении величины азимутальной асимметрии рассеяния $\epsilon(\theta)$. Поляризация пучка Р_{пуч} находилась по формуле $\epsilon(\theta) / P_{pp}(\theta)$, где $P_{pp}(\theta)$ - поляризация, возникающая при упругом рассеянии на водороде.

Измерения проводились при энергиях протонов 330, 596 и 635 Мэв для различных углов (см. табл. 1). Выбор углов и энергий обусловлен тем, что анализирующие свойства водорода в этих условиях изучались ранее с помощью различных методов разными авторами ^{/3,4,5/}, результаты которых, по-видимому, находятся в удовдетворительном согласии между собой.

Схема опыта приведена на рис. 1 и не требует подробных пояснений. Сброс энергии пучка осуществлялся с помощью полиэтиленовых поглотителей, устанавливаемых перед поворотным магнитом. Измерения проводились с мишенями из

3

x) Эта величина может быть получена, если воспользоваться результатами работ /1,3/.

СН₂ в С . Скорость счета от углерода совтавляла (5-7)% от счета с мишенью из полиэтилена. Разрешающее время схемы совпадений 2,5 исек.

Перед началом измерений проверялась точность установки счетчиков и изучалось распределение плотности протонов по сечению пучка (измерялся профиль пучка). Эти измерения выполнялись телескопом из четырех счетчиков, включенных между собой на совпадения.

Результаты измерений ε(θ) вместе с использованными данными работ /3-5/ приведены в таблице 1.

Погрешности, указанные в этой таблице для величины $\epsilon(\theta)$, являются полными значениями абсолютных статистических ошибок. В таблице 1 не указаны систематические ошибки, возникающие из-за отсутствия точных сведений об анализирующей способности водорода. Согласно^{/4,5/}, относительная величина этой ошибки пренебрежимо мала для энергий 330 и 635 Мэв и не превышает 5,6% для энергии пучка 596 Мэв. Так как средние зиачения $P_{пуч}$, полученные для различных энергий пучка, совпадают в пределах одной статистической ошибки, можно полагать, что систематическая погрешность $P_{пуч}$, усредненная по всем измерениям, мала и ею, по-видимому, можно пренебречь.

I a O M A H a I	Т	a	б	л	И	ц	а	1
-----------------	---	---	---	---	---	---	---	---

Энергия	Угол 9	Асимметрия		Поляризация	I
Мэв	СЦМ Град,	е (_{в сцм})	$P_{pp}(\theta)$	Р _{пуч}	^Р пуч
330-	69 [°] 40 <u>+</u> 1 [°] 15	0,080 <u>+</u> 0,015	0,190 <u>+</u> 0,025	0,421 <u>+</u> 0,10	0,417 <u>+</u> 0.070 ×/
330	74 [°] 30 <u>+</u> 1 [°] 15	0,061+0,012	0,148 <u>+</u> 0,025	0,412 <u>+</u> 0,10	
596	45 [°] 20 <u>+</u> 2 [°] 30	0,207 <u>+</u> 0,006	0,488 <u>+</u> 0,025	0,424 <u>+</u> 0,025	0,425 <u>+</u> 0,018 ^{x/}
596	49 ⁰ 40 <u>+</u> 2 ⁰ 30	0,195 <u>+</u> 0,006	0,459 <u>+</u> 0,021	0,425 <u>+</u> 0,023	
635	34 ⁰ 30 <u>+</u> 1 ⁰ 15	0,211 <u>+</u> 0,010	0,494 <u>+</u> 0,040	0,427 <u>+</u> 0,040	
6 35	41°10 <u>+</u> 1°15	0,220 <u>+</u> 0,006	0,524 <u>+</u> 0,039	0,420 <u>+</u> 0,033	0,425 <u>+</u> 0,019
6 3 5	45 [°] 30 <u>+</u> 1 [°] 15	0,216 <u>+</u> 0,006	0,501 <u>+</u> 0,036	0,431 <u>+</u> 0.033	

Изучение возможного вклада ложных асимметрий, обусловленных неточечной геометрией эксперимента и энергетическим разбросом протонов в пучке, показало, что

x/Легко показать, что эти значения получены способом, не зависящим от сохранения временной инвариантности.

 асимметрия, связанная с неравномерной плотностью протонов по профилю использованного пучка - менее 0,0010;

б) асимметрия, возникающая из-за наличия энергетического спектра протонов в падающем пучке - менее 0,0015;

в) неопределенность измерений асимметрии вследствие неточной установки счетчиков - менее 0,0010.

Средневзвешенное значение Р пуч по всем измерениям равно 0,425<u>+</u>0,013. Это значение поляризации пучка должно быть учтено при перенормировке результатов^{2,6/}.

Авторы благодарны проф. В.П. Джелепову, Л.И. Лапидусу в Ю.М. Казаринову за полезные обсуждения.

Литература

- 1. М.Г. Мещеряков, С.Б. Нурушев, Г.Д. Столетов. ЖЭТФ, 33, 37 (1957).
- Б.М. Головин, В.П. Джелепов, В.С. Надеждин, В.И. Сатаров. Труды международной конференции по физике высоких энергий, Дубна, 1964.
- Л.С. Ажгирей, Ю.П. Кумекин, М.Г. Мещеряков, С.Б. Нурушев, В. Соловьянов, Г.Д. Столетов. Ядерная физика, 2, 892 (1965).
- O. Chamberlain, E. Segre, R. Tripp, C. Wiegand, T. Ypsilantis. Phys. Rev., <u>105</u>, 288, 1957.
 F. Betz, Y. Arens, H. Dost, M. Hansroul, L. Holloway, T. Schultz, G. Shapiro, W. Troka. Preprint UCRL-11440, 1964.
- G. Coignet, D. Cronenberger, R. Kuroda, A. Michalowicz, J.C. Olivier, M. Poulet, J. Teillac, M. Borghini, P. Roubeau, C. Ryter. Nuovo Cim., XLIII, 708, 1966.
- 6. Б.М. Головин, В.П. Джелепов, В.С. Надеждин, В.И. Сатаров. ЖЭТФ, <u>36</u>, 433 (1959).

Рукопись поступила в издательский отдел 2 марта 1967 г.

