

P1 - 3143

Я. Бэм, В.Г. Гришин, М.М. Муминов, В.Д. Рябцов

ИССЛЕДОВАНИЕ ОБРАЗОВАНИЯ (e<sup>+</sup> e<sup>-</sup>)-ПАР ЭЛЕКТРОНАМИ С ЭНЕРГИЕЙ Е = 2,4 ГЭВ

1967,

BUICOKMX JHEPTWN

RAG PATOPHS

P1 - 3143

Я. Бэм, В.Г. Гришин, М.М. Муминов, В.Д. Рябцов

ИССЛЕДОВАНИЕ ОБРАЗОВАНИЯ (e<sup>+</sup> e<sup>-</sup>)-ПАР ЭЛЕКТРОНАМИ С ЭНЕРГИЕЙ Ē = 2,4 ГЭВ

объединонный институт парных изследотичной БИЕЛИКОТЕНА

482312 2P

Бэм Я., Гришин В.Г., Муминов М.М., Рябнов В.Д. Р1-3143 Исследование образования (e<sup>+</sup>e<sup>-</sup>) - пар электронами с энергией E = 2,4 Гэв

Изучалось прямое образование (e<sup>+</sup> e<sup>-</sup>) -пар с E<sub>y</sub> > 10 Мэв электронами с энергиями 1,25-4 Гэв с помощью 24-литровой пропановой пузырьковой камеры ЛВЭ ОИЯИ. Экспериментально полученное сечение σ<sub>тр</sub> 55 <u>+</u>24 мбн находится в согласии с теоретическим значением, полученным Баба.

Разработанная методика позволяет успешно измерять с помощью водородной пузырьковой камеры. тр

## Препринт Объединенного института ядерных исследований. Дубна, 1967.

Bőhm J., Grishin V.G., Muminov M.M., P1-3143 Ryabtsov V.D.

Investigation of  $(e^+e^-)$  Pair Production by Electrons with E = 2.4 GeV

Direct production of (e<sup>\*</sup>e<sup>\*</sup>)-pairs with E  $\gamma \ge 10$  MeV by 1.25-4 GeV electrons was investigated with the help of a 24litre propane bubble chamber of the High Energy Laboratory of the JINR. The obtained cross sections  $\sigma_{tr} = 55 \pm 24$  mb is in agreement with the theoretical value obtained by Bhabha. The method proposed admits a successful measuring of the  $\sigma_{tr}$  by means of a hydrogen bubble chamber.

# Preprint. Joint Institute for Nuclear Research. Dubna, 1967.

### § 1. В ведение

Процесс образования электрон-позитронных пар заряженными частицами изучался в ряде теоретических работ /1-8/. Впервые сечение процесса

$$e^{-} + Z \rightarrow e^{-} + e^{+} + e^{-} + Z$$
 (1)

было вычислено Баба<sup>/1/</sup> в приближении Вайцзекера-Вильямса. В работах<sup>/4,5/</sup> было вычислено сечение этой реакции с помощью диаграмм Фейнмана, причем учитывались только две диаграммы из восьми возможных (рис. 1В, 1Г), а вклад остальных был оценен приближенно. В этих же работах был проведен анализ приближения Вайцзекера-Вильямса и авторы пришли к заключению, что сечения, полученные Баба<sup>/1/</sup>, можно сравнивать с экспериментальными, когда энергия первичных электронов (Е<sub>0</sub>) больше 10 Гэв.

В работе<sup>777</sup> были вычислены дифференциальные сечения реакции (1) с учетом всех восьми диаграмм (рис. 1) с помощью ЭВМ для Е<sub>с\*</sub> 6 Гэв и для больших передач импульсов (e<sup>+</sup>e<sup>-</sup>) -паре.

Полученные результаты отличаются от вычисленных по формулам Баба в 2-3 раза. Отсюда делается вывод, что при E<sub>0</sub> = 1-10 Гэв кообходимо учитывать все диаграммы (рис. 1).

На рис. 2 показаны полные сечения для E<sub>0</sub> = 0,01 - 100 Гэв, вычисленные по формулам, полученным в работах<sup>/1-6/</sup> для молекулы пропана (С<sub>3</sub>H<sub>8</sub>). Из рис. 2 видно, что теоретические сечения отличаются друг от друга на ≈ 30%. Поэтому представляется интересным вычислить сечения процесса (1) с помощью ЭВМ с учетом всех диаграмм Фейнмана с точностью ≈ 5%.

2. Образование (e e)-пар электронами исследовалось экспериментально в нескольких десятках работ (например, см. работы /9-23/). Почти всегда резуль-

таты опытов сравнивались с теорией Баба<sup>/1/</sup>. Основной экспериментальной трудностью при определении сечения процесса (1) является выделение фоновых событий, возникщих в результате конверсии тормозных у -квантов в веществе (псевдотриденты), так как сечение тормозного излучения примерно в 100 раз больше сечения процесса (1). Фон псевдотридентов в зависимости от усповий эксперимента составлял 80% от всех зарегистрированных (e<sup>+</sup>e<sup>-</sup>) -пар.

Первая серия работ имеет качественный характер и была сделана с помошью диффузионных камер. Источником электронов являлись *β* -активные ядра (см., например, обзорную работу<sup>9</sup>).

Вторая серия работ связана с методикой ядерных эмульсий. В большинстве опытов ядерные эмульсии были облучены космическими лучами (например,  $^{10-16}$ ). В экспериментах  $^{17-18}$  использовались электронные пучки от ускорителей ( $E_0 = = 320$  и 550 Мэв). В работе  $^{10}$  была вычислена зависимость числа псевдотридентов от расстояния вершины ( $e^+ e^-$ ) -пары от следа первичного электрона в плоскости эмульсии. Эти результаты использовались многими авторами при отделении тридентов от фона. На рис. 3 приведены средние длины свободного пробега электронов в эмульсии Ильфорд С -5 для процесса (1), полученные в работах  $^{10-18}$ . Пз рис. 3 видно, что для  $E_0 > 1$  Гэв экспериментальные значения сечений в 2-4 раза больше, чем предсказывает теория Баба.

Авторы работы<sup>/19/</sup> проанализировали методику измерений реакции (1) в ядерных эмульсиях и считают, что установлено расхождение между теорией и экспериментальными результатами. С другой стороны, в работе<sup>/20/</sup> обращается внимание на очень малую статистику во всех этих работах (60 тридентов и псевдотридентов), высокий уровень фона (≈ 80%), большие неточности при измерении элергии первичных электронов, и в связи с этим экспериментальные результаты ставятся под сомнение.

Имеются также три работы  $^{/21-23/}$ , в которых сечение процесса (1) определялось с помощью электроники для  $E_0 = 25$ , 230 и 31,5 Мэв соответственно. Результаты работ  $^{/21-22/}$  находятся в согласии с теорией Баба. Дифференциальные сечения при  $E_0 = 31,5$  Мэв  $^{/23/}$  составляют 1/3 теоретически вычисленных сечений реакций (1)  $^{/1/}$  и находятся в рамках теоретической неопределенности вычисления сления сечений  $^{/4/}$ . Фон псевдотридентов в этих работах определялся с помо-

Таким образом, в настоящее время процесс образования (e<sup>+</sup>e<sup>-</sup>)-пар электронами плохо изучен как экспериментально, так и теоретически. Поэтому представляются интересными исследования этого процесса с помощью электронных ускорителей методикой пузырьковых или искровых камер с вы-ислением теоретических значений сечений (1) на ЭВМ.

### § 2. Методика эксперимента

Образование (е́е́)-пар электронами изучалось с помощью 24-литровой пропановой пузырьковой камеры ЛВЭ ОИЯИ, помещенной в магнитное поле 14,3 кгаусс. Камера была облучена пучком т<sup>-</sup>, μ<sup>-</sup>-мезонов и электронов с pc =4,00±0,06 Гэв/<sup>24/</sup>. Содержание электронов в первичном шучке было опрелелено экспериментально и оказалось равным (2,0±0.6%)<sup>25,26/</sup> и (1,3±0,13)%<sup>27/</sup>.

Отбирались события по следующим правилам просмотра:

1. (e<sup>+</sup>e<sup>-</sup>)-пара или пара, состоящая из положительного и отрицательного релятивистских лучей, лежит на следе частицы из пучка (нет просвета между ними).

2. В точке образования пары не заметен излом на следе первичной частины ( $\theta < 1^{\circ}$ ).

 События находятся в эффективном объеме камеры (см. Приложение 1). Всего было просмотрено около 43 тысяч кадров и найдено 203 события. Двеналцать тысяч кадров было просмотрено дважды. Эффективности однократного и двукратного просмотров оказались равны с 1 =(87±3)% и с =98% соответственно. Одно событие, найденное на просмотренном материале, соответствует сечению (1,2±0,12) мбл.

В 80% событий была идентифицирована (e<sup>+</sup>e<sup>-</sup>)-пара по ирнизации, сбросу эпергии, δ – электронам и по соотношению пробег-энергия (отрицательный след с меньшей эпергисй считался относящимся к паре). Было найдено только одно событие со вторичным взаимодействием первичной частицы.

Анализ фоновых событий, связанных с п -мезонами, показал, что их вклад в отобранные случаи не превыщает 4% (см. Приложение II ).

Методика измерений энергии электронов в пропановой пузырьковой камере с учетом ионизационных и радиационных потерь описана в работе<sup>/28/</sup>. Ошибки в определении энергии электронов составляют (20-25)%.

Сечения тормозного излучения и образования (e<sup>+</sup>e<sup>-</sup>)пар у -квантами в веществе хорошо известны<sup>/29-33/</sup>. Это обстоятельство в принципе позволяет количественно выделить процесс прямого образования (e<sup>+</sup>e<sup>-</sup>)-пар

$$\mathbf{e}^{-} + \mathbf{Z} \rightarrow \mathbf{e}^{-} + \mathbf{e}^{+} + \mathbf{e}^{-} + \mathbf{Z}$$
(1)

на фоне тормозного излучения, сопровождаемого конверсией у-квантов в(e<sup>f</sup>e<sup>-</sup>)-

$$e^{-} + Z \rightarrow \gamma + e^{-} + Z \tag{2}$$

$$\gamma + Z' \rightarrow e^+ + e^- + Z'. \tag{3}$$

Для экспериментального определения сечения процесса (1) в пропановой пузырьковой камере мы использовали метод, аналогичный тому, который применялся в ядерных эмульсиях /10/.

Схема фонового процесса (2), (3) в плоскости камеры (x,y), перпендикулярной к направлению магнитного поля, показана на рис. 4. А – точка рождения тормозного y -кванта и В – точка его конверсии в (e<sup>+</sup>e<sup>-</sup>)-пару, AB' – траектория движения электрона в камере. При небольших длинах конверсии ( $\ell = AB < 9 \text{ см}$ ) можно пренебречь угловым распределением тормозных y – квантов, многократным рассеянием электрона в пропане и его энергетическими потерями на  $\ell \le 9 \text{ см}$  (см. Приложение Ш). В этом приближении электрон после излучения движется по окружности с радиусом  $R = K(E - E_{\gamma})$ , где K = 0,233 см/Мэв для H = 14,3 кгаус.

Расстояние между точками В'и В обозначим через  $\xi$ . Положим  $\xi > 0$ , если В лежит вне окружности (R), и  $\xi < 0$ , если В находится внутри (R). Очевидно, что для фонового процесса величина  $\xi$  – имеет широкое распределение ( $\xi \ge 0$ ), в то время как для процесса (1)  $\xi = 0$ , если не рассматривать ошибок измерений.

Учитывая сделанные выше приближения, получим, что

$$\xi = \frac{\ell^2}{2R} \,. \tag{4}$$

Измерения величины  $\xi$  проводились на микроскопе МБИ-9 с окулярным микрометром (15 x 6,3). Одно дёление микрометра соответствует 1,82 микронам на кадре. В дальнейшем все значения величины  $\xi$  приводятся на снимке в делениях.

Первый способ измерения  $\xi$  заключался в следующем (см. рис. 5). С помощью окулярного микрометра определялись координаты X точек X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, X<sub>4</sub>. Правила отбора событий обеспечивают, что X<sub>2</sub> < X<sub>3</sub> и X<sub>4</sub> > X<sub>1</sub>. Величина  $\xi_1$  вычислялась следующим образом:  $\xi_1 = X_4 - X_3$ , если X<sub>2</sub> > X<sub>1</sub> и X<sub>4</sub> > X<sub>3</sub>;  $\xi_1 = X_2 - X_1$ , если X<sub>4</sub>  $\leq X_3$  и X<sub>2</sub>  $\leq X_1$ . В остальных случаях  $\xi_1 = ((X_4 + X_2)/2 - (X_3 + X_1)/2.$ 

Второй способ заключался в том, что измерялось расстояние между осями треков электрона и (e<sup>+</sup>e<sup>-</sup>)-пары ( $\xi_2$ ). Гистограмма распределения  $\Lambda \xi = \xi_1 - \xi_2$ показана на рис. 6. Отсюда было получено, что  $\Lambda \xi = 0,15$  дел. и  $\sigma(\Lambda \xi) = 1,9$  дол. Так как эти два метода измерения  $\xi$  дали одинаковые результаты, то в дальнейшем мы их не будем различать.

Для получения количественных результатов необходимо определить ошибку в измерении величины ξ. С этой целью были проведены следующие измерения.

На первичных п<sup>-</sup> -мезонных треках (рс =4 Гэв) измерялась величина тем же самым способом, как это долалось нами для событий с (e<sup>+</sup>e<sup>-</sup>) -парами. Отсюда мы получили минимально возможное значение среднеквадратичной ошибки σ<sub>c</sub> =2 дел. (см. рис. 7).

Величина  $\xi$  измерялась также для 150 случаев рассеяния  $\pi^-$  -мезонов ( рс =4 Гэв) на электронах (  $E_{\delta} = 200$ -680 Мэв) в пропановой пузырьковой камере. Средний угол вылета  $\delta$  -электронов (  $\Theta_{\delta} = 10^{-2}$  рад.) по порядку величины равен среднему углу между электроном и позитроном в (e<sup>+</sup>e<sup>-</sup>) - паре. Для процесса  $\pi^-$ e<sup>-</sup> -рассеяния должно быть  $\xi = 0$ . Гистограмма распределения событий по  $\xi$  показана на рис. 8. Здесь  $\xi = -0.7$  дел. и  $\sigma_{\xi} = 3.7$  дел. В связи с тем, что точка  $\pi$ е -рассеяния определяется хуже, чем точка образования (e<sup>+</sup>e<sup>-</sup>) - пары (только двойная ионизация и два вторичных следа), мы считаем, что  $\sigma_{\xi} = 3.7$  дел. является максимальной величиной для  $\sigma_{\xi}$  в случае (e<sup>+</sup>e<sup>-</sup>)-парь

Величина  $\xi$  для 63 (e<sup>+</sup>e<sup>-</sup>) -пар также измерялась двумя физиками. Для того чтобы эти измерения были независимыми, при втором измерении  $\xi$  использовалась другая область треков, удаленная на 3-4 пузырька от вершины пары. Было получено, что ошибка разницы двух измерений, т.е.  $\xi_n - \xi_\delta$ , равна

σ = 3 дел. Точное определение значения полной ошибки в величине ξ иредставляет большие трудности. В связи с этим в данной работе полагалось, что 2,5 дел ≤σ ξ ≤ 3,5 дел., т.е. значения заключены между минимально и максималь-

но возможными. Была измерена также средняя ширина электронного трека. Она оказалась равной (30 <u>+</u>8) дел.

Гистограмма распределения 203( $e^+e^-$ ) -пар по величине  $\xi$  показана на рис. 9. Большинство событий (90%) имеет величину  $\xi \ge -3$  дел. Обсуждение эф-фектов, которые могут влиять на это распределение, дано в Приложениях II и П.

### § 3. Результаты эксперимента

Распределение фоновых событий (процессы (2), (3)) по величине  $\xi$  было вычислено (см. Приложение IV , уравнение (4. IV )). С точностью ~ 3% форма распределения не зависит от энергий  $E_y$  и Е . При вычислении предполагалось, что для всех значений  $\xi$  ошибки измерений распределены по Гауссу с дисперсней  $\sigma_{\mathcal{F}}$ . Гистограммы для фоновых процессов (2), (3) показаны на рис. 9 пунктиром, нормировка проводилась по числу событий в интервале  $\xi$  =3-15 дел.

Из разности фоновой и экспериментальной гистограммы для  $\sigma_{\xi} = 3$  дел. было найдено, что сечение образования ( $e^+ e^-$ )-нар в пропане ( $C_3 H_8$ ) равно  $\sigma_{\rm TP} = 55\pm14$  мбн. Приведенная здесь ошибка учитывает статистические флуктуации числа первичных электронов /27/, числа найденных тридентов, числа событий в интервале  $\xi = 3-15$  дел., по которым нормировалось фоновое распределение. Если учитывать еще неопределенность в  $\sigma_{\xi}$  (2,5-3,5 дел) как систематическую орнобку, то  $\sigma_{\rm TD} = 55\pm24$  мбн.

На рис. 10 приведена гистограмма распределения отобранных событий по энергии ( $e^+, e^-$ )-пар для  $E_{\gamma} \ge 10$  Мэв. Пунктиром дана теоретически вычисленная гистограмма суммы распределений событий по энергиям ( $e^+, e^-$ )-пар для процессов (1) и (2), (3). Распределение для тридентов (уравнение (7, IV)) нормировано на 46 событий и фоновая кривая (уравнение 6, IV) получена в предноложении, что число электронов в первичном пучке равно ( $1,3\pm0,13$ )%<sup>277</sup>. Ошибка, показанная на рис. 10 в первом интервале энергий (10-60 Мэв), связана с ошибками вычисления фоновой кривой ( $\approx 12\%$ ) и найденного числа тридентов ( $\approx 45\%$ ). Для энергии  $E_{\gamma} \ge 150$  Мэв вычисленная гистограмма имеет ошибку  $\approx 12\%$ . Из рис. 10 видно, что теоретическая и экспериментальная гистограммы находятся в хорошем согласии для  $E_{\gamma} \ge 60$  Мэв. Для  $E_{\gamma} = (10-60)$  Мэв экспериментальная гистограмма лежит ниже теоретической, но согласуется с ней в рамках двойной ошибки.

На рис. 11 приведена гистограмма распределения найденных событий по энергиям первичных электронов ( Е ≥ 1,25 Гэв). Пунктиром дана теоретическая гистограмма только для фоновых процессов, нормированная на полную плошадь. Теоретическое распределение находится в качественном согласкы с экспериментом.

В таблице 1 приведены вычисленные эначения числа фоновых событий для трех значений  $\xi_{max}$  (ур. (2. IV)). Приведенная ошибка связана с неопределенностью пижних границ эпергий E <sub>у min</sub>=10<u>+3</u> Мэв и F <sub>min</sub> =1,25<u>+</u>0,25 Гэв и числа электронов в пучке. Отсюда может быть получено, что число тридентов для

 $\xi_{\rm max}$  = 9 дел. равно 14±19, что согласуется с числом тридентов, определенным по распределению событий по  $\xi$  .

По формулам, приведенным в работе  $^{/1/}$ , было вычислено сечение процесса образования (e<sup>+</sup>e<sup>-</sup>) - пар электронами в пропапе. Оно оказалось равным  $\sigma_{\rm TD}$  $\neg$  (60±5) мбн (ур. (3, IV)). При вычислении пренебрегалось экранированием ядра атомными электронами и полагалось  $E_{\rm ymin}$  = 10±3 Мэв и  $F_{\rm min}$  =1,25± ±0,25 Гэв. Учет экранирования занижает сечение (1) приблизительно на 15%, но, с другой стороны, мы не учитывали вклад в сечение от процесса образования (e<sup>+</sup>e<sup>-</sup>)-пар в поле атомных электронов, который завышает сечение образования тридентов на ≈18%. Таким образом, в рамках приведенных выше ошибок мы получили согласие между теоретическим и экспериментальным эначениями сечений для процесса (1).

При просмотре было найдено только одно событие со вторичным ядерным взаимодействием, которое не связано с прямой геперацией ( $e^+e^-$ ) -пары  $\pi^-$  -мезовом ( $\xi = -26$  дел.). Отсюда можно получить, что сечение процесса

$$\pi^{-} + C_{8}^{12} \rightarrow \pi^{-} + e^{-} + e^{+} + C_{8}^{12}$$
(5)

меньше ≈ 20 мкбарн. Грубая оценка ожидаемого сечения процесса дифракционного образования (e<sup>+</sup>e<sup>-</sup>)-пар π<sup>-</sup> -мезонами на ядре углерода приводит к величине порядка нескольких микробаря<sup>/34/</sup>.

Таким образом, в данной работе получены следующие результаты.

1. Измерено сечение образования ( $e^+e^-$ ) -пар электронами с E=1,25-4 Гэв в пропане (C<sub>3</sub>H<sub>8</sub>). Полученное значение  $\sigma_{\rm Tp} = (55 \pm 24)$  мбн согласуется с теоретическим  $\sigma_{\rm Tp} = (60 \pm 5)$  мбн /1/. В связи с этим

расхождение между теорией и экспериментом в 2-4 раза (§ 1) представляется маловероятным для пропана.

2. Использованная в этом эксперименте методика позволяет успешно исследовать процесс образования (e<sup>+</sup>e<sup>-</sup>)-пар электронами с помощью водородной пузырьковой камеры, так как фон от псевдотридентов в этом случае будет примерно в 10 раз меньше ( L <sub>рад</sub> (H) = 10 м, L <sub>рад</sub> (C<sub>3</sub> H<sub>8</sub>)=1 м). Для определения сечения  $\sigma_{\rm TP}$  с точностью = 7% достаточно чметь около 70 тысяч кадров (10 электронов на 1 кадр) с 50-см водородной шузыръковой камеры.

Авторы признательны за полезные обсуждения И.М. Граменицкому, М. Ирешу, М.И. Подгорецкому, В.Н. Стрельцову и лаборантам групп просмотра и измерений.

#### приложение 1

События типа (2), (3) отбирались для  $\xi_{max} \approx 20$  дел. Поэтому начало эффективной области отстоит на 10 см от входного окна камеры ( У =-15 см). Толшина входного окна камеры составляет 0,32 радиационной единицы длины. В конце камеры эффективность просмотра занижается. В связи с этим эффективный объем был задан следующим образом:

$$3 \le X \le 27$$
 cm,  $-15 \le Y \le 12$  cm,  $2 \le Z \le 9$  cm.

На 249 зарегистрированных событий 221 находилось в этой области. В 18 случаях не удалось измерить величину  $\xi$  и в 21 случае не было возможности определить импульсы и направляющие косинусы электронов.

Распределения точек образования (e<sup>+</sup>e<sup>-</sup>)-пар по координатам X , Y , Z показаны на рис. П1.

Распределения направляющих косинусов  $\ell$ , m, n первичных треков в точках образования (e<sup>+</sup>e<sup>-</sup>)-пар показаны на рис. П2.

Распределения на рис. П1, П2 хорошо согласуются с распределениями, полученными в работе /27/.

#### приложение и

#### Фоновые процессы

1. Для определения числа случайных наложений ( $e^+e^-$ )-пар, возникающих от конверсии у -квантов, образовавшихся в окне камеры, на треках  $\pi^-$ -мезонов было просмотрено 7 тысяч кадров. Было найдено 737 ( $e^+e^-$ )-пар, направленных вдоль полета первичных частиц ( $\pm 5^\circ$ ). Отсюда было получено, что па нашем материале должно быть несколько случаев случайных паложений.

2. Сечения тормозного излучения и прямого образования ( $e^+e^-$ )-пар  $\mu^-$  и  $\pi^-$ -мезонами во много раз меньше, чем в случае электронов /34/. Поэтому вклад этих процессов в сечение  $\sigma_{\pi\pi}$  не учитывался.

### ПРИЛОЖЕНИЕ III

1. Средний пространственный угол вылета тормозного  $\gamma$  -кванта относительно первичного электрона равен  $\Theta_{1\gamma} \approx \frac{mc^2}{E}$  /29/ ( Е- энергия первичного электрона, m - его масса) и почти не зависит от энергии  $\gamma$  -кванта  $E_{\gamma}$ . Тормозные  $\gamma$  -кванты в 90% случаев вылетают под углом  $\Theta_{1\gamma} \leqslant \frac{4mc^2}{F}$ . Распределение угла.  $\alpha$  (проекция пространственного угла  $\Theta_{1\gamma}$  на плоскость (x, y)) является приблизительно нормальным распределением

(x, y)) является приблизительно нормальным распределением с a = 0и  $\sigma_a \approx \frac{mc^2}{r}$ .

2. Дисперсия смещения координаты **х** траектории электрона, вызванного многократным рассеянием в пропане, равна  $x^2 \approx 10^{-7} l^3 \text{ см}^2$ .

3. Между точками А и В' (см. рис. 4) электрон теряет энергию в основном на тормозное излучение. Средние потери энергии на длине АВ'≤9 см равны ≈ 6%. В связи с этим вычисленное полное число фоновых событий завышено (см. Приложение IV).

4. Оптическая система пузырьковой камеры состоит из двух фотоаппаратов (фокус <sup>с</sup> ≈ 6,1 см), установленных на базе В = 30 см и на высоте Н ≈64 см над камерой. В связи с распределением найденных событий по Z (см.рис.П1в) среднее увеличение оказалось равным (10<u>+</u>0,4).

Внутри камеры величина  $\xi$  является вектором  $\xi = [\xi_x, \xi_y, \xi_z] \cdot \xi_\pi$  и являются изображением  $\xi$  на левый и правый кадр и, вообще,  $\xi_\pi \neq \xi_\pi$ . Если пренебречь коэффициентами преломления, то

$$\vec{\xi}_{n} - \vec{\xi}_{n} = [(\xi_{x,n} - \xi_{xn}), 0] \quad u \in [\xi_{x,n} - \xi_{xn}] = (\frac{B - 2X}{(B + Z)^{2}} \xi_{z})$$

(Точка В' на рис. 4 имеет координаты В'=[X,Y,Z] в камере). В связи с наличием многократного рассеяния и угла вылета  $\mathfrak{S}_{1Y} = \epsilon_{max} < 1$  дел. и  $\overline{\epsilon} = 0.$ 

Приблизительно для 30% найденных событий величина  $\xi$  измерялась на ловом и правом кадрах. Гистограмма величины  $\epsilon = (\xi_n - \xi_n)$  показана на рис. ПЗ. Отсюда было получено  $\epsilon = 0.15 \pm 2.2$  дсл.

5. Электрон между точками AB' (см. рис. 4) может рассеиваться на атомных электронах. Приблизительно в 3% событий электрон рассеивается на угол  $\Theta_{\delta} \ge 6'(E_{\delta} \ge 3 \text{ Мэв})$ , что приводит к добавочному смещению  $\xi_{\delta} > \sigma_{\xi}$  ( $\sigma_{\xi} = 3$  дел). Таким образом, рассмотренные выше эффекты, которые могут влиять на распределение найденных событий по  $\xi$ , несущественны.

#### ПРИЛОЖЕНИЕ IV

Введем следующие обозначения.

 $N_{A}$  – число Авогадро, A – вес граммолекулы пропана,  $\rho$  – плотность пропана, t – толщина мишени, которую прошел электрон (в середине камеры t = 0,54 рад. длины),  $\Delta Y$  – ширина интервала по оси Y в камере, до середины которого толшина равна t ,  $E_{0}$  =4 Гэв – энергия электронов перед камерой (для t =0), E – энергия первичных электронов внутри камеры,  $\mu(E_{\gamma})$  – ве – роятность конверсии y –квапта с энергией  $E_{\gamma}$  на одной радиационной длине L в чропане <sup>/32/</sup>,  $N_{0}$  – число электронов, падающих на камеру,  $w(E,t,E_{0}) dE$  – вероятность того, что электрон с первоначальной энергией  $E_{0}$  после прохождения мишени толщины t будет иметь энергию в интервале  $E_{1}E + dE$  .  $\sigma(E_{\gamma}, E) dE_{\gamma}$  обослачает сечение образования тормозного y –кванта с энергией в интервале  $E_{\gamma}$ ,  $E_{\gamma} + dE_{\gamma}$  электроном с энергией E в пропане с учетом экрапцрования <sup>/29/</sup> и излучения в поле атомных электронов<sup>/31/</sup>.  $\sigma_{B}(E_{\gamma}, E) dE_{\gamma}$ 

$$M = N_0 \frac{N_A}{A} \rho.$$
 (I.IV)

1. Полное число псевдотридентов в пропане определяется выражением:

$$N = M \Delta Y \sum_{\substack{E_{0} \\ E_{min} \\ \forall y \\ min \end{bmatrix}}} \int dE \int dE_{\gamma} \int w (E, t, E_{0}) \sigma(F_{\gamma}, E) \times (2.IV)$$

$$\mu(E_{\gamma}) \exp[-\mu(E_{\gamma})^{\ell}] d\ell. \qquad (2.IV)$$

2. Полное число прямых (e<sup>+</sup>e<sup>-</sup>) -пар :

$$N = M\Delta Y \sum_{t} \int_{E_{min}}^{E_{0}} dE \int_{W} (E, tE_{0}) \sigma_{B} (E_{y}, E) dF_{y}.$$

3. Распределение псевдотридентов в зависимости от ξ определяется выражением:

$$\frac{dN}{d\xi} = M \Delta Y \sum_{t} \int_{E_{min}}^{E_{0}} dE \int_{y_{min}}^{E_{max}} \int_{0}^{\varphi_{max}} w(E,t,E_{0})\sigma(E_{y},E)\mu(E_{y}) \times \\ \times \exp\left[-\mu(E_{y})\sqrt{2K(E-E_{y})\xi}\right] \frac{\sqrt{2K(E-E_{y})}}{2\sqrt{\xi}} \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2\sigma^{2}}(\xi-\xi_{exp})^{2}\right] d\xi.$$

4. Распределение первичной энергии Е для поевдотридентов

$$\frac{dN}{dE_{exp}} = MAY \sum_{t} \int_{L_{min}}^{E} dE \int_{V_{2K}(E-E_{\gamma})\xi_{max}}^{\sqrt{2K(E-E_{\gamma})\xi_{max}}} \sigma(E_{\gamma}, E) \mu(E_{\gamma}) \times \exp\left[-\mu(E_{\gamma})f\right] \frac{1}{\sqrt{2\pi\beta E}} \exp\left\{-\frac{i}{2\beta^{2}}\left(1-\frac{E_{exp}}{E}\right)^{2}\right\} df.$$

Вычисление проведено с  $E_{min} = 800$  Мэв и  $\beta = 0,2$ . Здесь  $\sigma = \beta E$  - среднсквадратичная ошибка измерения энергии E.

5. Распределение энергий (e<sup>+</sup>e<sup>-</sup>)-пар для псевдотридентов

$$\frac{dN}{dE_{\gamma}} = M \Delta Y \sum_{t} \int dE_{t} \int \psi(E,t,E_{0})\sigma(E_{\gamma},E) \times \mu(E_{\gamma}) \exp \left[-\mu(E_{\gamma})\ell\right] d\ell.$$

6. Распределение энергий (e<sup>+</sup>e<sup>-</sup>) - пар для тридентов

$$\frac{dN}{dF_{\gamma}} = M \Delta Y \sum_{t} \int_{E_{min}}^{E_{0}} w(E,t,E_{0}) \sigma_{B}(E_{\gamma},E) dE.$$

Во всех вычислениях полагодств  $\Lambda Y = 3$  см.  $\sum_{t}$  обозначает для псевдотридентов суммирование по области Y = (-16,5; 7,5) см, отвечающей в среднем области рождения тормозных *у* -квантов и для тридентов f = (..13,5; 10,5) см.

| ,<br>тах дел | N reop.         | N эксп.         |
|--------------|-----------------|-----------------|
| 20           | 204 <u>+</u> 23 | 203 + 14        |
| 15           | 176 <u>+</u> 19 | $182 \pm 13$    |
| 9            | 137 <u>+</u> 15 | 151 <u>+</u> 12 |

Таблица 1

Литература

- 1. H.J. Bhabha. Proc. Roy. Soc. (London) A 152, 559 (1935).
- 2. G. Racah. Nuovo Cimento, 14, 93 (1937), ; 4, 112 (1937).
- 3. M.M. Block, D.T. King, W.W. Wada. Phys. Rev. <u>96</u>, 1627 (1954).
- 4. T. Murota, A. Ueda, H. Tanaka. Prog. Theoret. Phys. 16, 482 (1956).
- 5. T. Murota, A. Ueda. Prog. Theoret. Phys. 16, 497 (1956).
- 6. Ф.Ф. Терновский. ЖЭТФ <u>37</u>, 793 (1959).
- 7. E. G. Johnson. Phys. Rev. <u>140</u>, 4B, 1005 (1965).
- 8. J. Bjorken, S. Drell, S. Frautsche, Phys. Rev. <u>112</u>, 1409 (1958).
- 9. H. Crane, J. Halpern, Phys. Rev. <u>55</u>, 838 (1938).
- 10. M. Koshiba, M.F. Kaplon. Phys. Rev. <u>97</u>, 193 (1955).
- 11. J.E. Naugle, P.S. Freier. Phys. Rev. <u>92</u>,1086 (1953).
- 12. M. Koshiba, M.F. Kaplon. Phys. Rev. 100, 327 (1955).
- 13. M. Gailloud, R. Weill. Ph. Rosselet. Helv. Phys. Acta 30, 281 (1957).
- 14. M.M. Block, D.T. King, W.W. Wada, Phys. Rev. <u>96</u>, 1627 (1954).
- 15.J.E. Naugle, P.S. Freier, Phys. Rev. 104, 804 (1956).
- 16. P.K. Aditya. Nuovo Cimento 11, 546 (1959).

- 17, L.L. Stanley, Bull. Amer, Phys. Soc. 2, 167 (1956).
- 18. F.J. Loeffler. Phys. Rev. 108, 1058 (1957).
- 19. R. Weill, Helv. Phys. Acta 31, 641 (1958).
- 20.P.K. Aditya, Nuovo Cimento 13, 1013 (1959).
- 21. N.S. Shiren, R.F. Post. Phys. Rev. <u>86</u>, 617 (1952).
- 22. M. Camac. Phys. Rev. 88, 745 (1952).
- 23. L. Criegee, Z. Physik, 158, 433 (1960).
- 24. Ким Хи Ин, А.А. Кузнецов, В.В. Миллер. Препринт ОИЯИ 2092, Дубна 1965.
- 25. В.Г.Гришин, Э.П. Кистенев, Му Цзюнь. ЯФ, 2, 886 (1965).
- 26. В.С. Пантуев. Препринт ОИЯИ 2100, Дубна 1965.
- 27. Я. Бэм, В.Г.Гришин, В.Д. Рябцов. Письма ЖЭТФ, т.1У, в.3, 106 (1986).
- 28. В.Г. Гришин и др. Препринт ОИЯИ Р-2277, Дубна 1965.
- 29. H. W. Koch, J. W. Motz. Rev. Mod. Phys., 31, 920 (1959).
- 30. H. A. Bethe, W. Heitler. Proc. Roy. Soc. London. <u>A 146</u>, 83 (1934).
- 31. J. A. Wheeler, W. E. Lamb. Phys. Rev. <u>55</u>, 858 (1939); Phys. Rev. <u>101</u>, 1836 (1956).
- 32. Я. Бэм, В.Г. Гришин. Препринт ОИЯИ Р-2636, Дубна 1966.
- 33. В. Гайтлер. Квантовая теория излучения. ГИТТЛ, Москва, 1956.
- 34. А.И. Ахиезер, И.Я. Померанчук. УФН т. LXV, , в. 4, 593 (1958).

Рукопись поступила в издательский отдел 27 января 1967 г.



Рис. 1. Графики Фейнмана для процесса образования (e<sup>+</sup>e<sup>-</sup>) - пар электронами.







Рис. 2.Завислиюти полных сечений иля продесса (1) от энергии электронов, вычеслещиче по формулам: 1) без учета экранирования ядра атомными электронами <sup>(4)</sup>; 2) без учета экранирования<sup>(1,6)</sup>; 3) полное экранирование<sup>(6)</sup>; 4) полное экранирование<sup>(4)</sup>; 5) без учета экранирования<sup>(3)</sup>.

1.



Рис. П2. Распределение первичных электронов в процессах(1), (2) в (3).

а) по  $l = \cos e_{1x}$ , б) но  $m = \cos e_{1y}$  в) но  $n = \cos e_{1z}$ , где  $e_{1x}$ ,  $e_{1y}$ ,  $e_{1z}$  – углы можлу направлением дыжения первичных электовнов в точке образования (e<sup>+</sup> e<sup>-</sup>)-пары и соответственно осями X,Y,Z, сохванизми с камерой.



или. В. Средней своболе и адиал пробила 2 – сл. ила процесси (1) в адерних то все илх Плькорд Сног, вслучанаци с раздух окснораментах. Сличалав врасти с опессал во теорий 12.



Рис. II3. Гистограмма распределения величины  $\Lambda\xi = \xi_n - \xi_n$ , гле  $\xi_n$ ,  $\xi_n$ , измерены соответственно на левом и правом кадрах.



Рис. 4. Схема фонового процесса (2), (3) в плоскости камери (х, у) , черичликулярной к направлению магнитного ноля. А – точка реждения тормозного у – кванта; В – точка его конверсии в (е'е')-пару; 1 – переичной электров; К -р анустокружности, по которой является он этров 2.



Рис. 5. Схема измерения величины ξ с помощью окулярного микрометра. Прямые линии показывают усредление координат X по 3-4 пузырькам.



Рис. 6. Гистограмма распределения величины  $\Delta \xi = \xi_1 - \xi_2$ .



Рис. 7. Гистограмма распределения величины 🗧 , измеренной на первичных 🐙 -мезонных треках.



Рис. 8. Гистограмма распределения величины  $\xi$  для процесса рассеяния  $\pi^-$  -мезонов на электронах.





Рис. 10. Гистограмма распределения событий по энергиям (e<sup>+</sup>e<sup>-</sup>) - пар для процесса (1) и фона. Пунктиром показана гистограмма суммы вычисленных распределений для тридентов и для фона (абсолютное число).



Рис. 11. Гистограмма распределения случаев по энергия первичных электронов. Пунктиром показана вычисленная гистограмма только для фоновых процессов с учетом ошибок измерения энергий электронов ( 20%).