X9TP, 1967, T.53, 6.1(7), c.29-40

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Million and

C 346.55

K-90

Дубна

P1 - 3098

2/1.19671

IMAGAN XIANTIA RHOTAGANA

Л.А. Кулюкина, А.Н. Мествиришвили, Д. Нягу, Н.И. Петров, В.А. Русаков, У Цзун-фань

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ОТНОСИТЕЛЬНЫХ ВЕРОЯТНОСТЕЙ РАЗЛИЧНЫХ ВЕТВЕЙ РАСПАДА К⁰ - МЕЗОНОВ

1967.

P1 - 3098

Л.А. Кулюкина, А.Н. Мествиришвили^х, Д. Нягу, Н.И. Петров, В.А. Русаков. У Цзун-фань

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ОТНОСИТЕЛЬНЫХ ВЕРОЯТНОСТЕЙ РАЗЛИЧНЫХ ВЕТВЕЙ РАСПАДА к⁰₂ - МЕЗОНОВ

Направлено в ЖЭТФ

4755/1

х/ Тбилисский государственный университет.

Измеречие относительных вероятностей дептонных и челептонных распадов

К -мезонов представляет особый интерес с точки зрения проверки превила отбора ΔI = 1/2 по изотопическому спину. В данном случае для нелептонных распадов в принципе возможно измерение относительных интенсивностей переходов с изменением изотопического спина на ΔI = 3/2 и ΔI = 5/2, знание которых необходимо для установления механизма нарушения правила отбора

ΔI = 1/2; определения того, обусловлено ли это нарушение виртуальными фотонамя, или же оно заложено в природе слабых взаимодействий. В настоящей работе измерение относительных вероятностей распадов K_a^0 -мезонов

$$\begin{split} \mathbf{K}_{3}^{\mathbf{o}} & \Rightarrow \pi^{\pm} + e^{\mp} \rightarrow \nu \quad , \\ & \rightarrow \pi^{\pm} + \mu^{\mp} + \nu \quad , \\ & \rightarrow \pi^{+} + \pi^{-} + \pi^{0} \quad , \\ & \rightarrow \pi^{0} + \pi^{0} + \pi^{0} \end{split}$$

выполнено на основе обработки 9400 V⁰ -событий от распада K⁰₂ - мезонов. зарегистрированных магнитными камерами Вильсона в пучках нейтральных частиц синхрофазотрона Объединенного института ядерных исследований. Постановка опытов подробно описана ранее /1,2/.

1. Относительная вероятность К са -распада

Впервые относительная вероятность $K_{e^2}^{o}$ -распадо была определена в ОИЯИ в 1960 г. с помощью магнитной камеры Вильсона диаметром $\phi = 400$ мм^{/1/}.

К_ -распады идентисицировались на основе измерения поте-В этой работе ри импульса распадными частицами при прохождении через свинцовую пластинку толщиной 5,8 г/см², помещенную в ряде экспозиций в середине рабочего объема камеры. В дальнейшем при развитии исследований свойств К_-мезонов в ОИЯИ с помощью метровой магнитной камеры Вильсона произволилось уточнение величины этой вероятности с применением той же самой методики отбора К⁰, -распадов, как и в работе /1/. В случае метровой камеры (для которой средняя ошибка измерения потери импульса распадными частицами равна 17%), при отборе электронов в качестве минимальной потери импульса использовалось значение $\frac{\Delta \, \mathbf{p}}{r_{\mathrm{r}}}$ = 50%, т.е. к электронам относились те проходящие через пластинку частицы, которые имели потери Др > 50%. При этом из числа частиц, имеющих потери импульсов более 50%, п - и μ - мезоны исключались путем сравнения измеренных и вычисленных иопизационных потерь. Поскольку п - и и -мезоны, которые при указанном минимальном значении потери импульса могут имитировать электроны, имеют импульс не более 100 Мэв/с, дополнительным критерием для их идентификации служило также измерение плотности почернения следа проходящей частицы до и после пластинки. Для того, чтобы обеспечить лучшие условия для регистрации прохождений распадных частиц через пластинку и надежность измерения потери импульса отбирались только V⁰-события, у которых:

 а) длина следа проходящей частицы до пластинки не менее 10 см, а после пластинки – не менее 5 см;

б) величина стрелы, прогиба проекции следа на плоскость снимка Σ>0,06мм;

в) вершина V⁰ -события расположена в хорошо освещаемой части рабочего объема камеры (высотой 15 см).

Чтобы определить полное число K_{e3}^0 -распадов среди V^0 -событий, у которых одна или обе частицы проходят через свинцовую пластинку, в число прохождений электронов с потерей импульса $\frac{\Delta p}{p} > 50\%$ вводилась поправка на прохождения электронов с потерей импульса $\frac{\Delta p}{p} \leq 50\%$, а также поправка на прохождения с ливнями, в которых энергия электронов не превышает 8 Мэв. Введение второй поправки диктовалось тем обстоятельством, что по условиям освещения и фоновой загрузки около свинцовой пластинки надежно регистрировались только ливневые электроны с энергией более 8 Мэв.

х/ Определения вероятности, сделанные по части материала с метровой камеры, опубликованы в работах/3,4/_

При введении первой поправки использовалась формула для разброса потерь энергии электронами на излучение, полученная в работе^{/5/} Эйгса. При этом для единицы радиационной длины в свинце принималось значение

 $x_0 = 6,4$ г/см², вычисленное Довженко и Поманским⁶ с учетом последних данных по сечениям тормозного излучения электронов и образования пар протонами. Этому значению радиационной единицы длины приписывалась ошибка 6%. В результате было найдено, что лоля прохождений электронов с потерей импульса $\frac{\Delta p}{p} > 50\%$, усредненная по длинам путей этих частиц в свинцовой пластинке, равна (74 ± 4)%.

Вторая поправка вводилась по данным экспериментальной работы ^{/7/}, в которой было установлено, что для электронов с начальной энергией E₀=300Мэв, при толщине пластинки в одну X₀-единицу, доля ливней с энергией электронов E < 8 Мэв составляет 4%. Поскольку средняя энергия проходящих электронов в нашем опыте мало отличается от величины E = 300 Мэв, толщина пластинки близка к одной X₀-единице, используя данные указанной работы, мы не сделали сколько-нибудь заметной олибки.

В итоге измерения V⁰-событий и введения поправок было найдено: а) полное число V⁰-событий с прохождением одной или обеих распадных частиц через пластинку N = 1095;

 б) количество проходящих электронов с учетом поправок на потери импульса ^{Др} ≤ 50% и на ливни с энергией частиц E ≤ 8 Мэв п = 191,4. Подстановка этих данных в формулу

$$W = \frac{n(P_{e1} + P_{\pi 1})\{(P_{\mu 2} + P_{\pi 2}) + W_{3\pi}[(P_{\pi 3} + P_{\pi 3}) - (P_{\mu 2} + P_{\pi 2})\}}{[NP_{e1} - n(P_{e1} + P_{\pi 1})](P_{e1} + P_{\pi 1}) + n(P_{e1} + P_{\pi 1})(P_{\mu 2} + P_{\pi 2})}$$

дает для относительной вероятности К⁰-распада значение

 $\frac{\Psi(K_2^0 \rightarrow \pi^{\pm} + e^{\mp} + \nu)}{\Psi(K_2^0 - \text{заряженные продукты})} \approx (51 \pm 6)\%.$

В формуле приняты следующие обозначения:

Р_{е1} и Р_{п1} - расчетные вероятности прохождения электронов и п-мезонов от К⁰_{e3} -распада через пластинку, равные 14,90% и 19,12% соответственно; Р и Р – расчетные вероятности прохождения μ и π -мезонов от . $K_{\mu,3}^0$ –распада, равные 22,57% и 24,35% соответственно;

Р – расчетная вероятность прохождения π -мезонов от $K_2^0 \rightarrow \pi^+ + \pi^- + \pi^0$ распада, равная 32,90%;

 $W_{a,\pi}$ - относительная вероятность распада $K_{2}^{0} \rightarrow \pi^{+} + \pi^{-} + \pi^{0}$.

Расчетные вероятности прохождения распадных частии через пластинку получены на основе 3000 испытаний в каждом случае ^{x/}.

Приведенная ошибка определения вероятности, кроме статистических отклонений, включает также неточности, связанные с введением поправок, и неопределенность, с которой измерена вероятность заряженного K_{a3}^0 -распада, равная, по нашим данным, $w = (16,7 \pm 1,6)\%$. Величина относительной вероятности K_{a3}^0 -распада, полученная аналогичным путем по данным с камеры Вильсона диаметром $\phi = 400$ мм, составляет $W_{K_{a3}^0} = 0.46 \pm 0.11$. Средневзвешенное значение вероятности равно: $W_{K_{a3}^0} = (49,8 \pm 5,2)\%$.

2. Относительная вероятность распада $K_2^0 \to \pi^+ + \pi^- + \pi^0$

Для определения вероятности распада $K_2^0 \rightarrow \pi^+ + \pi^- + \pi^0$ использовался статистический метод разделения ветвей распада (предложенный в работе^{/8/}), не требующий идентификации распадных частиц. Этот метод основан на согласовании расчетных распределений V⁰-событий по параметру

$$E_{b}' = \frac{M_{k}^{2} - m_{\pi^{0}}^{2} + M_{t}^{2}}{2\sqrt{M_{t}^{2} - P_{N}^{2}}}$$

(где M_t - эффективная масса заряженных продуктов распада, вычисленная в предположении, что все распадные частицы являются π -мезонами; P_N^{\perp} - перпендикулярная составляющая импульса нейтральной распадной частицы) с соответствующим экспериментальным распределением путем нахождения мини-

х/ Все вычисления теоретических характеристик распадов производились по методу Монте-Карло с учетом условий отбора V⁰ -событий и энергетического спектра K₂⁰ -мезонов.

мума функции χ^2 Параметр E_5 представляет собой энергию распавшегося K_2^0 -мезона в системе, в которой продольная составляющая импульса заряженных распадных частки равна нулю.

В данном случае для анализа использованию только V^0 -события, вершины которых расположены в хорошо освещаемся объеме камеры (высотой 12см) в у которых длины проекций следов на плоскость снимка $\ell \ge 10$ см, а глубинные углы следов $a \le 60^{\circ}$; Расчетные эффективности такого отбора для K_{e3}^0 - $K_{\mu3}^0$ – и $K_{\pi+\pi-\pi^0}^0$ – распадов соответственно равны: 0,249; 0,330 и 0,464. Обшее количество отобранных событий составляет 1402. Их распределение по параметру E_5 представлено на рис. 1.Пунктирной линией на этом рисунке показано расчетное распределение для случая, когда относительная вероятность распада $\Psi(K_0^0 \to \pi^+ + \pi^- + \pi^0)$ равна 16,2%.

Расчетное распределение представляет собой сумму распределений для $K_{e3}^0 - K_{\mu3}^0 - \mu K_{\pi^+\pi^0}^0$ распадов. При составлении суммарного распределения отношение между вероятностями $K_{e3}^0 - \mu K_{\mu3}^0$ – распадов принималось равным 1. : 0,65.

На рис. 2 сплошной линией показан экспериментальный спектр π^0 -мезонов, полученный по V^0 -событиям с $E'_5 > 493$ Мэв и исправленный расчетным путем на вклад от $K^0_{\sigma3}$ - и $K^0_{\mu3}$ -распадов. Как видно из рисунка (пунктирная линия на котором изображает спектр π^0 -мезонов для постоянного матричного элемента), экспериментальный спектр заметно отличается от расчетного. Если соотношение между частотами событий в экспериментальном (ΔN) и расчетном ($\Delta \Phi$) слектрах представить в виде

$$\Delta N = (1 + a \frac{T_{\pi^0}}{M_{\kappa_2^0}}) \Delta \Phi$$

где T_{π^0} есть кинетическая энергия π^0 -мезона, то коэффициент $a = 7,8 \pm 0,9$.

Чтобы учесть отличие матричного элемента для распада $K_2^0 \to \pi^+ + \pi^- + \pi^-$ от постоянной величины, была применена следующая процедура вычисления распределения по параметру E_8' . В предположении постоянного матричного элемента вычислялись распределения, соответствующие интервалам кинетической энергии π^0 -мезона шириной $\Delta E = 10$ Мэв, начиная с нулевой энергии. Затем эти распределения складывались с весами, равными весам соот-

ветствующих энергетических интервалов в экспериментальном спектре π^0 -мезонов. При расчете распределений для лептонных распадов предполагается векторный вариант взаимодействия. Расчетные распределения для K_{e3}^0 -, $K_{\mu3}^0$ и $K_{\pi^+\pi^-\pi^0}^0$ -распадов получены на основе 1250, 830 и 625 отдельных испытаний соответственно; в распределениях учтена средняя экспериментальная ошибка измерения параметра $E_{\delta}^{(*)}$ Зависимость значения функции χ^2 от величины относительной вероятности распада $W(K_{2}^0 \to \pi^+ + \pi^- + \pi^0)$ представлена в таблице 1. Ожидаемое значение функции χ^2 равно 10.

$W(K_{2}^{0} \rightarrow \pi^{+} + \pi^{-} + \pi^{+}) (\%)$	Значение функции χ^2	
10,0	44,7	
13,75	21,3	
15,0	16,2	
16,25	15,0	
17,50	16,0	
18,75	17,8	

Таблица 1

Минимуму функции χ^2 соответствует величина вероятности $\Psi(K_2^0 \rightarrow \pi^+ + \pi^- + \pi^0) = 16,4\%$. Найденная величина вероятности является несколько заниженной по причине того, что рассеяние K_2^0 -мезонов до акта распада "переводит" часть $K_{\pi^+\pi^-\pi^0}^0$ -распадов в K_{e3}^0 – и $K_{\mu3}^0$ – распады. Это занижение составляет около 1,5 – 2%. Исправленное значение вероятности равно

$$\frac{W(K_2^0 \to \pi^+ + \pi^- + \pi^0)}{W(K_2^0 \to 3аряженные частицы)} = (16,7 + 1,6)\%.$$

Приведенная ошибка определения вероятности включает статистические отклонения и неопределенность, связанную с неточностью определения средней ошибки измерения параметра E'_{5} . Вследствие того, что распределения по параметру E'_{5} для K^{0}_{83} – и $K^{0}_{\mu8}$ – распадов близки между собой, величина отношения между вероятностями этих распадов практически не сказывается на величине вероятности $K_2^0 \rightarrow \pi^+ + \pi^- + \pi^0$ -распада. Поэтому найденное значение вероятности при данной ошибке измерения не зависит от сделанного нами предположения о численном значении отношения вероятностей лептонных распадов.

Несколько ранее аналогичным путем вероятность $K_2^0 \rightarrow \pi^+ + \pi^- + \pi^0$ - распада определена в работе^{/9/} параллельной группы. По сравнению с указанной работой мы использовали более строгие критерии отбора V^0 -событий и дополнительно учли зависимость матричного элемента для $K_{\pi^+\pi^-\pi^0}^0$ -распада от энергии π^0 -мезона.

3. Относительная вероятность К из -распада

Вероятность $K^0_{\mu3}$ -распада определена по измеренным вероятностям K^0_{e3} - и $K^0_{\pi^+\pi^-\pi^0}$ -распадов как величина, дополняющая их суммарную вероят-ность до единицы.

$$W(K_{\mu3}^0) = (33,5 + 5,5)\%$$

Таким образом, измеренное отношение вероятностей лептонных распадов составляет

$$\frac{W(K_{\mu3}^{0})}{W(K_{e3}^{0})} = 0,67 + 0,13.$$

Значения параметра $\xi = {f_-} (r_{de} f_- и f_- - формфакторы по сильному вза$ имодействию для лептонных распадов), найденные из приведенного отношениявероятностей, равны

$$\xi_1 = 0, 2 + 0, 8 + 1, 1 = 0, 2 + 1, 2 = -7, 0 + 1, 1 = 0, 9$$

4. Относительная вероятность распада $K_2^0 \rightarrow 3\pi^0$

Первое экспериментальное уклание $^{/1/}$ о существовании распада $K_2^0 \rightarrow 3\pi^0$ было получено в ОИЯИ с помощью клиэры Вильсона диаметром 400 мм. Тогда были зарегистрированы четыре электронно-позитронные пары, происхождение которых было трудно объясныть другими происссами, кроме распада $K_2^0 \rightarrow \pi^0 + \pi^0 + \pi^0 < \checkmark^\gamma_{e^+ + e^-}$. Позднее при продолжении этих исследований с помощью метровой камеры Вальсона на основе наблюдения 11 электронно-позитронных пар было показано существование рассматриваемого распада и сделана оценка его относительной раровано существование рассматриваемого распада и сде-

При завершении обработки экспериментального материала нами было зарегистрировано 29 электронно-позитронных пар, удовлетворяющих следующим критериям отбора:

а) импульс одного из электродов тары $p \le 80$ Мэв/с, а второго электрона $p \le 100$ Мэв/с;

- б) длины проекций следов пары на плоскость снимка l ≥ 40 мм;
- в) угол раствора пары $\omega \leq 70^{\circ}$;
- г) угол вылета зарть 6 > 20°;
- д) глубинный угол ваправления импульса пары а < 45°.

С целью обеспочения хоронах условий для измерения плотности относительного почернения следов V⁰ -событий высота объема, в котором регистрировались пары, была взята равной 12 см. Кроме того, в объем регистрации не включались области толилной 50 мм, прилегающие к боковым стенкам и свинцовой пластинке. Внутри выделенного объема найдено 7250 V⁰-событий. Идеатификация электронов по измерению плотности почернения следов подробно описана в /10/. Согласно расчету относительная доля нар, удовлетворяюших критериям отбора, составляет для метровой камеры 0,396. Расчет выполнен на основе функции распределения пар, полученной Кроллом и Вада /11/. Характеристики отобранных пар привелены в таблице 2. Средние ошибки измерения величин, приведенных в таблице, следующие: импульсов - не более 6%; углов вылета и глубинных углов - около 1,5 - 2⁰ и углов раствора - 2,5 - 3⁰.

На рис. З и 4 произволится сравнение экспериментальных распределений пар по квадрату отношения эффективной массы пары к массе π^0 -мезона и углу раствора с соответствующими расчетными распределениями для имр Далитца от распада $K_2^0 \rightarrow 3\pi^0$. Величина эффективной массы X пары равна:

Таблица 2

N	(Məb/c)	Р . (Мэв/с)	θ _t (град.)	а. (град.)	ω (град.)
1	50	40	116	28	8
2	17	8	39	11	10
3	16	60	34	6	7
4	50	33	77	32	20
5	29	103+18	33	10	3
6	52	7	62	24	16
7	62	53	28	25	18
8	54	52	77	42	1.2
9	53	63	76	28	52
10	82	61	30	12	28
11	62	57	50	11	27
12	26	73	51	12	4
13	98	18	84	28	5
14	61	61	39	20	6
15	66	26	26	21	5
16	58	31	36	26	3
17	77	36	33	30	2
18	81	49	48	42	5
19	35	26	164	16	13
20	84	91	38	29	43
21	29	85	41	19	11
22	53	48	54	31	48
23	. 27	55	53	7	27
24	58	41	41	33	4
25	21	34	84	22	5
26	55	42	65	10	7
27	67	31	77	34	5
28	13	39	82	32	5
29	52	20	82	19	4:
30	30	60	101	42	23
31	82	44	108	67	6
32	42	53	66	59	1:

$$X = [(E_{+} + E_{-}) - (\overline{P}_{+} + \overline{P}_{-})^{2}]^{\frac{1}{2}}$$

где E_+ , \overline{P}_+ и E_- , \overline{P}_- -энергия в импульс позитрона в электрона. С целью некоторого увеличения статистики в экспериментальные распределения включены три пары (NN 30,31 и 32), не удовлетворяющие критериям отбора по глубинному углу и месту нахождения вершины пары. Как показал расчет, эти два критерия практически не влияют на рассматриваемые распределения. Ввиду того, что ошибки опыта в несколько раз превосходят ошибки расчета, на рис. 3 и 4 показаны только экспериментальные ошибки. Как видно из рис. 3 и 4, между экспериментальными и расчетными распределениями имеется вполне удовлетворительное согласие. Оно показывает (см. работу ^{/10/}), что вклад в отобранные пары от пар внешней конверсии мал. Расчетная оценка этого вклада равна 13,6%.

В таблице 3 производится сравнение экспериментального^{X/} и расчетного распределений пар по параметру Y

$$Y = \frac{|E_+ - E_-|}{P_+},$$

где Р -абсолютная величина импульса нары.

A 1/	Количество пар (%)			
ΔY	опыт	расчет		
0,0 - 0,2	41,6 <u>+</u> 9,4	24,8		
0,2 - 0,4	25,0 <u>+</u> 7,3	23,7		
0,4 - 0,6	25,0 <u>+</u> 7,3	20,9		
0,6 - 0,8	6 ,3 <u>+</u> 3,6	17,4		
0,8 - 1,0	2,1 <u>+</u> 2,1	13,2		

Поскольку распределения пар Далитца и пар внешной конверсии по параметру Y (в отличие от распределений по эффективной массе и углу раствора) близки между собой, указанное сравнение нельзя использовать для установления природы отобранных пар. Однако в условиях нашего опыта оно (сравнение)

х/ В экспериментальное распределение, кроме пар, приведенных в табл.2, включены 16 пар, рассматриваемых в работе/17/.

оказалось очень полезным для определения эффективности регистрации пар Далитца при визуальном просмотре снимков по отнолению к эффективности регистрации V^0 -событий от заряженных распадов K_2^0 -мезонов. Из таблицы видно, что экспериментальное и расчетное распределения в данном случае не согласуются между собой. Действительно, если экспериментальное распределение разбить на два интервала $\Delta Y_1 = (0, 0-0, 0)$ и $\Delta Y_2 = (0, 0-1, 0)$, то количества пар в них отличаются от расчетных более чем на три стандартных отклонения.

Так как теоретическое распределение по параметру Y для пар Далитна от распада $\pi^0 \cdot y + e^+ + e^-$ хорошо согласуется с экспериментальным распределением, полученным в работе ^{/12/} на основе регистрации свыше 3000 пар, то следует сделать заключение, что наблюденное расхождение распределений в условиях нашего опыта связано с малой эффективностью регистрации пар, у которых одна из частиц имеет небольшой имлульс. Причиной пропуска таких пар, очевидно, является наличие фона посторонних частиц в камере ^{X/}. Как видно из таблицы 4, пропуск пар, у которых одна из частиц имеет небольшой импульс, практически не сказывается на распределении пар по эффективной массе и углу разлета. Во втором и третьем столбцах этой таблицы приведены расчетные распределения (псказанные на рис. 3 и 4), а во втором и третьем столбцах – полученные из них распределения путем исключения всех пар, у которых импульс одной из частиц не превышает 15 Мэв/с.

A (X)2	Количество пар (%)			Количество пар (%)		
$\Delta \left(\frac{\pi}{m_{\pi^0}}\right)^{-1}$	b > 0	р> 15 Мэв∕с	$\Delta \omega$	b > 0	р> 15 Мэв/с	

$10^{-5} - 10^{-3}$	41,3	40,3	0 -1 5 ⁰	62,2	70,2	
$10^{-3} - 10^{-2}$	32,1	33,7	$15-30^{\circ}$	18,9	17,9	
$10^{-2} - 10^{-1}$	21,2	19,4	30-45 ⁰	12,5	11,5	
10 ⁻¹ - 1,0	5,4	6,6	45-70 ⁰	6,4	1,6	

Таблица 4

Дополнительным подтверждением того, что указанное расхождение распределений пар по параметру Y действительно имеет место и не обусловлено ошибками расчета или недостаточностью статистики, является наблюдение

х/ Малая эффективность регистрации нар Далитца, у которых импульс одной из частиц мал, ранее наблюдался в работах/13-15/_

аналогичной картины в распределениях 36 пар внешней конверсии и 17 пар $K_{2}^{0} \rightarrow \pi^{+} + \pi^{-} + \pi^{0} \checkmark \gamma^{+} + \pi^{-}$. Поэтому Далитца из четырехлучевых распадов предположение о равенстве эффективности регистрации пар Далитца и V⁰ событий от заряженных распадов К⁰ -мезонов, которое делалось нами ра-ется неправильным. Чтобы ввести поправку на указанное различие эффективностей регистрации, мы считаем, что в интервале $\Delta Y = 0.0 - 0.6$, где нет ивного расхождения между экспериментальными и расчетными распределениями. v^0 – вероятность регистрации пар Далитца равна вероятности регистрации событий от заряженных распадов К -мезонов. Основанием для такого заключения является то обстоятельство, что найденная по результатам независимых просмотров вероятность регистрации V0 -событий, отнесенных при предварительной (визуальной) идентификации в разряд "похожих" на пары Далитда (среди которых фактически нет событий с импульсами частиц менее 40 Мэв/с), оказалась в пределах ошибок определения равной эффективности регистрации V⁰ -событий. Введенная таким образом поправка приводит к увеостальных личению количества пар Далитца на фактор 1,32+0,10. Указанная ошибка введения поправки учитывает расчетные ошибки, а также возможность того, что граница области, внутри которой эффективности регистрации пар Далитца и осталь-V⁰ -событий одинаковы, может находиться около значения Y = 0,4. ных Величина относительной вероятности, найденная в результате наблюдения 29 пар Далитца с учетом поправки на эффективность регистрации равна 🔭

$$\frac{W(K_2^0 \to 3\pi^0)}{W(K_2^0 \to 3aps \text{ женные частицы})} = (31^{+7}_{-6})\%.$$

5. Обсуждение результатов

Экспериментальные данные по относительным и абсолютным вероятностям различных ветвей распада K_2^0 -мезонов, опубликованные к моменту написания настоящей работы, сведены в таблицу 5. Для полноты картины в

х/Подробнее об эффективности регистрации пар см. в работе/16/.

xx/При определении вероятности учтено, что для камеры Вильсона диаметром ϕ = 400 мм доля отбираемых пар Далитца несколько ниже, чем для метровой камеры.

эту таблицу также включены результаты трех последних и наиболее точных измерений абсолютной вероятности K_2^0 -распада. Средневзвешенная абсолютная вероятность K_2^0 -распада равна $\Gamma_{K_2^0} = (19.4 \pm 1.3).10^6 \text{ сек}^{-1}$. Соответствующее ей среднее время жизни K_2^0 -мезона тоставляет $r_{K_2^0} = (5,2\pm0,4).10^{-8} \text{ сек}$. Из таблицы видно, что в нашей работе по сравнению с работами других авторов получены ванболее полные данные по относительным вероятностям различных ветвей K_2^0 -распада и что они находятся в хорошем согласии с аналогичными результатами других работ.

В первом столбце таблицы 6 приведены измеренные нами относительные вероятности K_2^0 -расцадов; а во втором столбце - абсолютные вероятности тех же распадов, вычисленные по данным первого столбца с использованием указавного выше среднего времени жизни: K_2^0 -мезонов. В третьем столбце з четвертом столбцах этой таблицы даны относительные и абсолютные вероятчости: K_3^0 -расцадов, вычисленные X' на основе правила $\Delta 1 = 1/2$ по относичельным вероягисстям. K^+ -распадов (с использованием среднего времени жизни: K^+ -мезонов, равного $\tau_{x+} = (1,224 \pm 0,013).10^{-8}$ сек.

Из сравяения экспериментальных и расчотлых данных следует, что в пределах оннабок опыта правило отбора — АТ = 1/2 хорово выполняется как для лептовных, так и для полентонных распадов. Ввиду того, что расчетные значения вероятностей для – Корослада получены из соотношения

 $\frac{W(K^{0} \rightarrow 3\pi^{0})}{W(K^{0}_{2} \rightarrow \pi^{+} + \pi^{-} + \pi^{0})} = 1.83 ,$

которое справедливо для случая, если имеют место переходы только в полностью симметричное состояние с изотопическим спином 1 = 1, и которое нечувствительно к примеси переходов с $\Delta I = 3/2$, согласие экспериментальцых и расчетных вероятностей ь данном случае следует рассматривать как содтверждение известного факта, что в конечном состоянии трех распадных

п -мезонов преобладает полностью симметричное состояние с I = 1.

Найденная в опыте величина нараметра а , описывающего в линейном приближении спектр π -мезонов в раснаде $K_2^0 \rightarrow \pi^+ + \pi^- + \pi^0$, хорошо

х/ При вычислении вероятностей введены поправки на различие статистических весов.

т	а	б	л	и	ц	а	5
-	-	~	••		-		-

Ветвь распада	Относительная вероятность(%)	Ссылка на литературу	Абсолютная вероятность, 10 ⁻⁶ сек -1	Ссылка на литературу
K ⁰	48,7 <u>+</u> 5	/18/	7,7 ± 1,2	/19/
	50,3 <u>+</u> 5,3	наст.раб.		.
	35,6 <u>+</u> 7	/18/		
^κ μ ³	33,0 <u>+</u> 5,5	наст.раб.		
$K_{\pi^{+}\pi^{-}\pi^{0}}^{0}$	18,5 ^{+3,8} -3.4	/8/	2,75 <u>+</u> 0,60	/20/
	15.7 + 3.0	/18/	3,26 <u>+</u> 0,77	/21/
	15,1 <u>+</u> 2,0	/22/	2,62 + 0,28 - 0.27	/23/
	15,9 <u>+</u> 1,5	/24/		
	19,4 <u>+</u> 2,3	/9/		
	16,2 <u>+</u> 1,5	/25/		
	17,8 <u>+</u> 1,7	/27/		
	14,4 <u>+</u> 0,4	/26/		
	16,7 ± 1,6	наст.раб.		
$K_{\pi^{+}\pi^{+}\pi^{-}}^{0}$	28 <u>+</u> 8	/17/	5,55 <u>+</u> 0,44	/28/
	20 <u>+</u> 6	/29/	5,22 ^{+1,03} -0,84	/23/
	31^{+7}_{-6}	наст.раб.		
$K_{e3}^{0} + K_{\mu3}^{0} + K_{\pi}^{0} +$	$\pi^{-}\pi^{0}$		15,8 <u>+</u> 1,9	/30/
$K_{03}^{0} + K_{113}^{0} + K_{3}^{0}$	7		20,8 <u>+</u> 2,0	/30/
30 μο σ			16,4 +4,2 -3,2	/31/
••••••••••••••••••••••••••••••••••••••			19,0 <u>+</u> 2,0	/32/

Ветвь	0	пыт	Расчет		
распада	Относит. вероят- ность (%)	Абсолют.ве- роятность, 10 ⁶ сек-1	Относит. вероятность (%)	Абсолютн. вероятность, 10 ⁶ сек - 1	
K ⁰ e3	49,8 <u>+</u> 5,2	7,5 <u>+</u> 1,1	49,1 <u>+</u> 3,2	7,7 <u>+</u> 0,5	
κ ^ο μ8	33,5 <u>+</u> 5,5	4,7 <u>+</u> 1,0	31,4 <u>+</u> 5,2	4,9 ± 0,8	
$K_{\pi^{+}\pi^{-}\pi^{0}}^{0}$	16,7 <u>+</u> 1,6	2,5 <u>+</u> 0,4	19,5 <u>+</u> 1,9	3,0 <u>+</u> 0,3	
κ ⁰ _{π⁰π⁰π⁰}	31.0 ⁺⁷ -6	4,5 <u>+</u> 1,6	35,6 <u>+</u> 3,7	5,6 <u>+</u> 0,6	

согласуется с другими определениями ^(9,18,22,34,35,26,27) этого нараметра, а также (в соответствии с требованием правила отбора $\Delta I = 1/2$) совпадает в пределах ошибок с его значением для спектра π^+ -мезонов в $K^+ \rightarrow \pi^0 + \pi^0$

$$\operatorname{ReI}_{3} = \frac{2\Gamma(K^{+} \to \pi^{0} + \pi^{0} + \pi^{+}) - 0.97\Gamma(K_{2}^{0} \to \pi^{+} + \pi^{-} + \pi^{0})}{4\Gamma(K^{+} \to \pi^{0} + \pi^{0} + \pi^{+}) + 0.97\Gamma(K_{2}^{0} \to \pi^{+} + \pi^{-} + \pi^{0})} = 0.04 \pm 0.04$$

Эта оценка примеси переходов с $\Delta I = 3/2$ получена в приближении, когда считается, что преобладают переходы с $\Delta I = 1/2$ в полностью симметричное состояние с изотопическим спином I = 1; но переходы с $\Delta I = 3/2$ могут происходить и в несимметричные состояния с I = 1.

Очевидно, что из-за очень большой неопределенности сделанная оценка может определять только порядок величины амплитуды перехода с $\Delta I = 3/2$, не превышающей, по-видимому, 4-5%. Однако к этой оценке надо относиться с известной осторожностью, так как она получена в предположении о СР-инвариантности распадного взаимодействия, в то время как имеющиеся данные /39,40,23/ по исследованию времзиной зависимости лептонных и нелелтонных распадов К⁰ -мезонов в пределах ошибок не исключают полностью возможности заметного проявления нарушения СР-кивариантности в указанных распадах.

В заключение авторы выражают благодарность научным сотрудникам Д.Котляревскому, Э. Оконову, Г. Тахтамышеву и Л. Чхаидзе за помощь в работе и большой группе лаборантов за обслуживание экспериментальной установки и измерение фотоснимков.

Литература

- 1. Д.В. Нягу, Э.С. Оконов, Н.И. Петров, А.М. Розанова, В.А. Русаков. ЖЭТФ, 40, 1618 (1961).
- 2. Д.М. Котляревский, А.Н. Мествиришвили, Д. Нягу, Э.О. Оконов, Н.И. Петров, В.А. Русаков, Л.В. Чхаидзе, У Цзун-фань. ЯФ, <u>1</u>, 1035 (1965).
- Г.Н. Варденга, Д.М. Котляревский, А.Н. Мествиришвили, Д.В. Нягу,
 Э.О. Оконов, Н.И. Петров, В.А. Русаков, У Цзун-фань. Преприят ОИЯИ Р-1920, Дубаа, 1964.
- 4. А.Н. Мествиришвили, Д. Нягу, Н.И. Петров, В.А. Русаков, У Цзун-фань. Препринт ОИЯИ, Р-2449, Дубла, 1965.
- 5. L. Eyges. Phys. Rev., 76, 264 (1949).
- 6. О.И. Довженко, А.А. Поманский. ЖЭТФ, <u>45</u>, 268 (1963).
- 7. Ch.A. d'Andlay, Le Gornal de Physique et le Radium. 16, 176 (1955). Ch.A. d'Andlay, Nuovo Cim., <u>12</u>, 859 (1954).
- 8. A. Astier, L. Blaskovic, M.M.De Courreges et al. Proceedings of the Aix-en-Provence. Internacional Conference on Elementary Particles 1961 (Centred Etudes, Nucleares de u Saelay, Seine et Oise), 1961, p. 227.
- М. Аникина, Г. Варденга, М. Журавлева, Д. Котляревский и др. Препринт ОИЯИ, Р-2065, Дубиа, 1965.
- М.Х. Аникина, М.С. Журавлева, Д.М. Котляревский, З.Ш. Манджавидзе и др. ЖЭТФ, <u>46</u>, 59 (1964).
- 11. N. Kroll, W. Wada, Phys. Rev., <u>98</u>, 1355 (1955).
- 12. N.P. Samios, R. Plano, A. Prodell, M. Schwartz, J. Steinberger. Phys. Rev., <u>126</u>, 1844 (1962).
- 13. B.M. Anand. Proc. Roy. Soc., A 220, 183 (1953).
- 14. Ю.Н. Будагов, С. Виктор, В.П. Джелепов, П.Ф. Ермолов, В.И. Москалев. ЖЭТФ, <u>38</u>, 1047 (1960).

- C.P. Sargent, R. Connelius, M. Rinehart, L.M. Lederman, K. Rogers. Phys. Rev., <u>98</u>, 1349 (1955).
- А. Мествирильили, Д. Нягу, Н. Петров, В. Русаков, У Цзун-фань. Препринт ОИЯИ, Р-2450, Дубна, 1965.
- М.Х. Аникина, М.С. Журавлева, Д.М. Котляревский и др. Препринт ОИЯИ, P-2090, Дубна, 1965.
- D. Luers, I.S. Mittra, W.I.Willis, S.S. Yamamoto. Phys. Rev., 133B, 1276 (1964).
- 19. B. Aubert, L. Behr, J.P. Lowqs, P. Mittner, C. Pascaud.

Материалы XII Международной конференции по физике высоких энергий, том 2, стр. 110, 1966, Атомиздат.

- L. Behr, B. Aubert, Y. Brisson, J.P. Lowqs, P. Mittner et al. Материалы XII Межданародной конференции по физике высоких энергий, том 2, стр. 112, 1966, Атомиздат.
- 21. J.A. Anderson, F.S. Grawfond, K.L. Goldly et al. Phys. Rev. Lett, <u>14</u>, 1475 (1965).
- 22. R.K. Adair, L.R. Leipuner. Physics Letters, 12, 167 (1964).
- 23. L. Behr, Y. Brisson, P. Petiay, E. Bellotti, A. Pullia, et al. Physics Letters, 22, 540 (1966).
- 24. P. Astburg, A. Michelini, C. Verkerk et al. Physics Letters, <u>16</u>, 175 (1965).
- 25. C.J.B. Hawkins. Physics Letters, 21, 238 (1966).
- 26. H.W.K. Hopkins, T.C. Bakon, F.R.Eisler, Proc. Intern. Conf. on Weak Interaction, Argonne, p. 67 (1965).
- 27. P. Cuidoni, V. Barnes, H.W. Foelshe et al. Proc. Intern. Conf. on Weak Interaction, Argonne, 1965, p. 49.
- 28. Y. Brisson, L. Behr, P. Petian, B. Aubert et al.

Материалы XII Международной конференции по физике высоких энергий, том 2, стр. 113, 1966, Атомиздат.

- А. Алексанян, А. Алихевян, А. Гальпер, Р. Кавалов и др. Препринт ФИАН им. П.Н. Лебедева, А.-75, Москва, 1964.
- L. Auerbach, K. Lande, A.K. Mann et al. Phys. Rev. Lett., <u>14</u>, 192 (1965).
- P.Astburg, A. Michelini, C. Verkerk, F. Verkerk et al. Physics Letters, <u>18</u>, 178 (1965).
- 32. Т. Fujii, J. Jovanovich, F. Turkot et al. Материалы XII Международной конференции по физике высоких энергий, том. 2, стр. 149, 1966, Атомиздат.
- 33. S. Francis et al. Phys. Rev., <u>136</u>, 1423 B. (1964).
- 34. A. Abashian, R. J. Abrams, I.W. Carpenter et al. Phys. Rev. Lett., <u>13</u>, 243 (1964).

- 35.L. Behr, Y. Brisson, P. Petlay, E. Bellotti, A. Pullia et al. Physics Letter Letters, <u>22</u>, 540 (1966).
- 36. G. Giacomelli et al. Physics Letters, 3, 346 (1963).
- 37. G.E. Kalmus, Phys. Rev. Lett., 13, 99 (1964).
- 38. V. Bisi et al. Nuovo Cim., 35, 768 (1965).
- 39. B. Aubert, L. Behr, F.L. Canavan et al. Physics Letters, <u>17</u>, 59 (1965).
- 40. M. Baldo- Ceolin, E. Calimati, C. Giampolillo et al. Nuovo Cim., <u>38</u>, 684 (1965).

Рукопись поступила в издательский отдел З января 1967.

Рис.1. Экспериментальное распределение $V = событий по параметру E'_5. Пунктиром показано расчетное распределение для <math>W_{n+n-n}c = 16,2\%$.

Рис.2. Энергетический спектр π^0 - мезонов. Пунктиром показано расчетное распределение.

Рис.4. Распределение отобранных пар по углу раствора. Пунктиром показано расчетное распределение.