2990

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

A.L. BARRAN

Дубна

Экз. чит. зала

P1 - 2990

О.А. Займидорога, Ю.Д. Прокошкин, В.М. Цупко-Ситников

ЛИВНИ В СВИНЦЕ, ОБРАЗОВАННЫЕ у -КВАНТАМИ С ЭНЕРГИЕЙ ОТ 0,1 ДО 1 ГЭВ

P1 - 2990

О.А. Займидорога, Ю.Д. Прокошкин, В.М. Цупко-Ситников

## ЛИВНИ В СВИНЦЕ, ОБРАЗОВАННЫЕ у -квантами с энергией от 0,1 до 1 гэв

Направлено в ЖЭТФ

### 1. <u>Введение</u>

an takan di akalan serjak pa

Экспериментальное изучение ливней, вызванных у-квантами умеренной энергии (сотни Мэв) в веществах с большим Z, позволяет получить информацию, необходимую как для построения развитой теории каскадного электромагнитного процесса, так и для решения ряда сложных методических задач экспериментальной физики (определение эффективности детекторов у-квантов, разрешаюшей способности спектрометров полного поглошения и др.). В указанной области энергий были выполнены расчеты ливней методом моментов<sup>/1/</sup> и методом Монте-Карло<sup>/2/</sup>. В первом случае вычислены усредненные характеристики каскада в широком диапазоне энергий вторичных частиц. Во втором случае определены и вероятностные характеристики ливней, однако данные получены для энергии частиц ливня, больших 10 Мэв, что существенно выше порога регистрации в детекторах у-квантов.

Проведение экспериментальных исследований ливней, вызванных у -квантами, наталкивается на значительные методические трудности, связанные с необходимостью использования моноэнергичного пучка у-квантов и регистрации ливней, образованных отдельными у -квантами<sup>/3/</sup>. Выполненные до настоящего времени экспериментальные работы позволили получить сведения лищь об усредненных характеристиках ливней<sup>/4/</sup>.

Целью настояшей работы являлось определение характеристик ливней, образованных в свинце у -квантами с энергией  $E_0 = 0,1 \div 1$  Гэв, расчетным путем на основании экспериментальных данных о ливнях, образованных электронами. Исследования ливней, образованных электронами, связаны с меньшими методическими трудностями, чем в случае у -квантов, и здесь в последнее время накоплен большой экспериментальный материал /5-10/. В области энергий выше 100 Мэв процесс взаимодействия у -квантов с атомами свинца сводится к акту конверсии у -кванта в электронно-

позитронную пару<sup>X/</sup>, характеристики которой известны с высокой гочностью, и дальнейшему прохождению электронов<sup>XX/</sup> через вещество. При этом пара движется прак тически в том же направлении, что и первичный у - квант. Средний угол разлета пары  $\theta = m_c^2/E$  составляет доли градуса и на два порядка величины меньше, чем угол многократного рассеяния компонент пары на длине радиационной единицы.

# 2. <u>Расчет ливней</u>

Обозначим через  $V_k(E_e,E,t')$  вероятность того, что в ливне, вызванном электроном с энергией  $E_e$ , на глубине t'образуется К электронов с энергией, большей E. Интересующая нас вероятность  $W_N(E_0,E,t)$  образования N электронов на глубине t в ливне, вызванном у -квантом с энергией  $E_0$ , связана с  $V_k(E_e,E,t')$  интегральным соотношением

$$\Psi_{N}(E_{0}, E, t) = \int_{0}^{t} dt' \exp[(t'-t)\sigma(E_{0})] \int_{0}^{E_{0}} dE_{e} \phi(E_{0}, E_{e}) \sum_{K=0}^{N} \Psi_{K}(E_{e}, E, t')$$

$$\times V_{N-K}(E-E, E, t')$$
.

Здесь  $\sigma(E_0)$  — сечение поглощения у -квантов с энергией  $E_0$  в веществе,  $\phi(E_0,E_s)$  — функция распределения компонент пары по энергии.

При вычислении сечений поглошения были использованы данные о сечении образования пар в свинце<sup>/11-10/</sup>. Для интервала энергий E<sub>0</sub> = 100 ÷ 200 Мэв, где сечение комптоновского рассеяния составляет 1 ÷ 2% от сечения образования пар, был проведен дополнительный расчет, учитывающий комптоновское рассеяние. При больших энергиях комптоновское рассеяние не учитывалось. Использованные в расчете эначения сечений поглощения у-квантов согласуются с экспериментально найденными величинами<sup>/12</sup>, 13, 14, 17/ в пределах 1,5%.

Значения  $\phi(E_0, E_s)$  были определены согласно Бете и Гайтлеру<sup>/18/</sup>. Поправки, связанные с неточностью используемого при этом борновского приближения, невелики <sup>12/</sup> что подтверждается экспериментальными данными <sup>/12</sup>, 19, 20/

В выполненных расчетах вероятностей W<sub>N</sub> были использованы экспериментальные данные <sup>/6</sup>, 8, 10/ о величинах V<sub>к</sub> (E<sub>e</sub>,E,t), полученные в области энергий

х/ Доля комптоновского рассеяния и фотоэффекта составляет всего 2% при E=100 Мэв и быстро падает с ростом энергии.

xx/ Мы не вводим различия между электронами и позитронами ливня.

. Е. = 45 ÷ 1000 Мэв для энергин обрезания E=1 Мэв<sup>/5/</sup>. Интэграл (1) определялся путем последовательного суммирования с шагом по t', равным 1 г/см<sup>2</sup>.

### 3. Флюктуации числа электронов

Полученные в результате расчета величины вероятности  $W_N(E_0, E = 1 \text{ Мэв, t})$ приведены в таблице. Погрешности найденных вероятностей определяются в основном погрешностями экспериментальных данных о флюктуациях в ливнях, образованных электронами. Для N = 0 они составляют 1% на малых t и возрастают до 3% с увеличе – нием t . Для N = 1 ÷ 5 погрешности составляют 5 ÷ 10% при  $E_0 \leq 300 \text{ Мэв.}$ В случае  $E_0 \geq 500 \text{ Мэв}$  погрешности равны 5 ÷ 10% для N = 1 ÷ 5 и возрастают до 10 + 20 % для N = 5 + 10.

Как видно из рис. 1, где представлены зависимости  $\mathbb{W}_N$ , в области до максимума каскадных кривых отчетливо проявляется "четно-нечетный" эффект  $^{/ZI/}$  – выделение вероятностей появления ливней с четным числом электронов. Этот эффект, связанный с тем, что при конверсии у -кванта электроны образуются парами, наблюдается и в случае ливней, вызванных электронами, где при малых t преобладают ливни с нечетным числом электронов N . С увеличением t энергия ливня быстро дробится, процесс образования пар высокоэнергетичных электронов теряет преобладающую роль и четно-нечетный эффект исчезает.

Для аппроксимации найденных зависимостей мы использовали распределение описывающее ливень при помощи двух (для четных и нечетных N) распределений Пуассона:

$$\mathbf{A} = \begin{cases} \mathbf{a} \alpha_1 / \mathbf{s} \mathbf{h} \alpha_1 & \mathbf{N}! & , & \mathbf{N} - \mathbf{H} \mathbf{e} \mathbf{q} \mathbf{e} \mathbf{T} \mathbf{H} \mathbf{o} \mathbf{e} \\ (1-\mathbf{a}) \alpha_2^{\mathbf{N}} / \mathbf{s} \mathbf{h} \alpha_2 \mathbf{N}! & , & \mathbf{N} - \mathbf{q} \mathbf{e} \mathbf{T} \mathbf{H} \mathbf{o} \mathbf{e} \end{cases}$$
(2)

. Здесь  $a_1$  и  $a_2$  связаны со средними значениями  $N_1$  и  $N_2$  числа электронов N в ливнях с нечетным и четным числом электронов:

$$\overline{N}_1 = a_1 \operatorname{cth} a_1$$
,  $\overline{N}_2 = a_2 \operatorname{th} a_2$ . (3)

При энергиях E<sub>0</sub> < 500 Мэв распределение (2) хорошо описывает флюктуации ливней на всех глубинах t. В области более высоких энергий согласие становится менее удовлетворительным, особенно для четных N.

На рис. 2 приведены вычисленные для различных значений  $E_0$  вероятности  $W_0(E_0, E, t)$  того, что в ливне на глубине t отсутствуют электроны с энергией E > 1 Мэв. Знание этой величины дает возможность определить эффективность регистрации  $\gamma$  -квантов при помощи  $\gamma$  -телесколов, использующих свинцовый конвертор, а также выбрать оптимальную толщину конвертора.

| Eo<br>Mev   | Ur/cm <sup>2</sup> | 5     | IO    | 15    | 20     | 25    | 30     | 35      | 40     | 45    | 50    |
|-------------|--------------------|-------|-------|-------|--------|-------|--------|---------|--------|-------|-------|
| IOOI        | Wo                 | 0,638 | 0,467 | 0,449 | 0,520  | 0,610 | 0,70I  | .0,772  | 0,834  | 0,882 | 0,913 |
|             | W                  | 0,084 | 0,207 | 0,243 | 0,235  | 0,202 | 0,162  | 0,126   | 0,098  | 0,077 | 0,060 |
|             | · W <sub>2</sub>   | 0,217 | 0,220 | 0,215 | 0,177  | 0,139 | 0,102  | 0,084   | 0,055  | 0,034 | 0,032 |
|             | W <sub>3</sub>     | 0,031 | 0,069 | 0,064 | 0,047  | 0,037 | 0,020  | 0,013   | 0,009  | 0,006 | 0,004 |
|             | W4                 | 0,019 | 0,032 | 0,025 | 0,017  | 0,011 | 0,007  | 0,004   | 0,003  | 0,002 | 0,001 |
|             | .W5                | 0,002 | 0,007 | 0,005 | 0,003  | 0,002 | 0,00I  | 0,001   | 0,001  | 0,000 | 0,000 |
| 200         | Wo                 | 0,601 | 0,378 | 0,283 | 0,278  | 0,337 | 0,425  | 0,524   | 0,614  | 0,710 | 0,772 |
|             | Wi                 | 0,053 | 0,138 | 0,200 | 0,243  | 0,251 | 0,235  | 0,210   | 0,186  | 0,165 | 0,152 |
|             | W <sub>2</sub>     | 0,255 | 0,278 | 0,276 | 0,266  | 0,24I | 0,2II  | 0,170   | 0,122  | 0,078 | 0,047 |
|             | ₩3 W               | 0,054 | 0,107 | 0,132 | 0,126  | 0,110 | 0,091  | 0,072   | 0,061  | 0,038 | 0,025 |
|             | W4                 | 0,029 | 0,059 | 0,069 | 0,059  | 0,043 | 0,027  | 0,017   | 0,010  | 0,006 | 0,004 |
|             | W <sub>5</sub>     | 0,007 | 0,024 | 0,026 | 0,019  | 0,012 | 0,007  | 0,005   | 0,003  | 0,002 | 0,001 |
|             | Wss                | 0,003 | 0,012 | 0,015 | 0,009  | 0,006 | 0,003  | 0,002   | 0,001  | 0,001 | 0,000 |
| 300         | Wo                 | 0,583 | 0,347 | 0,226 | 0,185  | 0,202 | 0,261  | 0,341   | 0,434  | 0,53I | 0,614 |
|             | W <sub>f</sub>     | 0,035 | 0,092 | 0,140 | 0,176  | 0,207 | 0,223  | 0,224   | 0,225  | 0,222 | 0,215 |
|             | W <sub>2</sub>     | 0,257 | 0,269 | 0,261 | 0,254  | 0,254 | 0,236  | 0,217   | 0,178  | 0,134 | 0,094 |
|             | W3                 | 0,070 | 0,134 | 0,167 | 0,191  | 0,175 | 0,163  | 0,140   | 0,115  | 0,087 | 0,061 |
|             | W4                 | 0,038 | 0,083 | 0,107 | 0,108  | 0,095 | 0,070  | 0,046   | 0,028  | 0,016 | 0,009 |
|             | W5                 | 0,012 | 0,042 | 0,055 | 0,05I  | 0,041 | 0,030  | 0,020   | 0,012  | 0,007 | 0,005 |
|             | W>5                | 0,006 | 0,034 | 0.044 | 0.036  | 0.027 | 0,018  | 0,011   | 0,007  | 0.004 | 0.002 |
| 200         | Wo                 | 0,572 | 0,33I | 0,197 | 0,130  | 0,112 | 0,131  | 0,178   | 0,245  | 0,326 | 0,420 |
|             | Wi                 | 0,022 | 0,052 | 0,066 | -0,080 | 0,102 | 0,134  | 0,172   | 0,202  | 0,224 | 0,234 |
|             | W2                 | 0,252 | 0,246 | 0,205 | 0,194  | 0,200 | 0,211  | 0,220   | 0,213  | 0,195 | 0,167 |
|             | W <sub>3</sub>     | 0,076 | 0,140 | 0,162 | 0,176  | 0,184 | 0,183  | 0,176   | 0,156  | 0,130 | 0,100 |
|             | W4                 | 0,049 | 0,093 | 0,140 | 0,155  | 0,155 | 0,139  | 0,115   | 0,083  | 0,061 | 0,040 |
|             | W5                 | 0,017 | 0,067 | 0,101 | 0,116  | 0,112 | 0,096  | 0,076   | 0,055  | 0,037 | 0,023 |
|             | W6                 | 0,008 | 0,043 | 0,067 | 0,076  | 0,072 | 0,059  | 0,043   | 0,029  | 0,017 | 0,010 |
|             | W7                 | 0,003 | 0,021 | 0,037 | 0,042  | 0,037 | 0,025  | 0,016   | 0,009  | 0,005 | 0,003 |
|             | wg                 | 0,001 | 0,010 | 0,010 | 0,019  | 0,018 | 0,015  | 0,010   | 0,006  | 0,004 | 0,002 |
|             | Win                | 0,000 | 0,004 | 0,007 | 0,008  | 0,000 | 0,005  | 0,004   | 0,002  | 0,001 | 0,001 |
|             | 11/2               | 0.563 | 0.317 | 0.02  | 0.003  | 0.002 | 0.001  | 0.001   | 0,001  | 0.000 | 0.000 |
| <b>1000</b> | W0                 | 0,000 | 0,020 | 0,119 | 0,103  | 0,004 | 0,049  | 0,071   | 0,009  | 0,101 | 0,154 |
|             | Wa                 | 0.243 | 0,020 | 0,021 | 0,021  | 0,020 | 0,040  | 0,002   | 0,094  | 0,152 | 0,170 |
|             | W.                 | 0.080 | 0.170 | 0,10  | 0,000  | 0,004 | 0,000  | 0,107   | 0 156  | 0,102 | 0,169 |
|             | W,                 | 0.056 | 0.106 | 0 121 | 0,099  | 0 125 | 0,117  | 0,157   | 0,100  | 0,101 | 0,104 |
|             | We                 | 0.024 | 0.077 | 0.109 | 0.124  | 0.137 | 0,1.54 | 0.144   | 0. 128 | 0,106 | 0,08/ |
|             | We                 | 0.012 | 0.060 | 0,100 | 0.124  | 0.135 | 0.131- | 0, 1191 | 0,00%  | 0.077 | 0,054 |
|             | W-5                | 0,006 | 0.043 | 0.082 | 0,106  | 0.113 | 0.108  | 0.097   | 0.074  | 0.055 | 0.039 |
|             | Wo                 | 0.003 | 0.043 | 0.059 | 0,080  | 0.087 | 0,080  | 0.063   | 0.019  | 0,022 | 0,000 |
|             | W                  | 0.001 | 0.026 | 0.038 | 0.054  | 0.058 | 0.051  | 0,005   | 0,028  | 0.018 | 0,020 |
|             | Win                | 0.001 | 0.008 | 0.023 | 0.034  | 0.035 | 0.031  | 0.024   | 0.017  | 0.017 | 0,006 |
|             | Wsin               | 0.001 | 0.007 | 0.023 | 0.036  | 0.037 | 0.030  | 0.022   | 0.014  | 0.009 | 0.005 |

Таблица Величини т<sub>к</sub> (Е<sub>0</sub>,Е = I не∨, t)



 Рис. 1. Вероятности W<sub>N</sub> (E<sub>0</sub>, E = 1Мэвд). • - вычисленные вероятности. Для наглядности сопоставления результатов расчета с аппроксимирующими распределениями на рисунке приведены обобщенные распределения (2), в которых вместо факториала целого числа N используется обобщенный факториал - гаммафункция Γ (N + 1). 1 - распределение (2), соответствующее нечетным N, 2 - четным N. Пунктирные кривые - обычные распределения Пуассона. Значения t указаны в г/см<sup>2</sup>.



œ

Рис. 16. (См подпись к рис. 1а).



Рис. 2. Вероятность W<sub>0</sub> (E<sub>0</sub>, E =1 Мэв, t). Цифрами у кривых показаны соответствующие значения E<sub>0</sub> в Мэв.

#### 4. Каскадные крявые

Полученные распределения W<sub>N</sub> позволяют определить каскадные кривые N(E<sub>0</sub>,E,t) - зависимости среднего числа электронов в ливие от глубины t . Эти кривые представлены на рис. 3, где приведены также каскадные кривые для ливией, образованных электронами. Погрешности найденных значений N составляют 3 ÷ 5%.





Развитие ливней, вызванных у-квантами, в отличие от ливней, вызванных электронами, характеризуется меньшим по высоте и более широким максимумом каскадной кривой, который сдвинут в область больших толщии <sup>t</sup> примерио на одну радиационную единицу. Интегральные каскадные кривые

$$I(E_0, E, t) = \int_0^t \overline{N}(E_0, E, t') dt', \qquad (4)$$

определяющие потери энергии ливня в веществе, также различаются для случаев первичных у-квантов и электронов (рис. 4).



Рис. 4. Интегральные каскадные кривые. Обозначения те же, что и на предыдущем рисунке.

Найденные в настоящей работе каскадные кривые сопоставлены на рис. 5 с кривыми, полученными методом моментов<sup>/1/</sup>. В качестве радиационной длины и критической энергии для свинца были использованы значения 6,4 г/см<sup>2</sup> и 7,4 Мэв<sup>/22/</sup>. Сравнение приводится для энергий первичных электронов: 161 и 382 Мэв. Заштрихованная область на рис. 5 представляет собой коридор значений, соответствующий



Рис. 5. Каскадные кривые, полученные в настоящей работе (сплошные линии) и вычисленные методом моментов/1/ (пунктирные линии). Заштрихованная область соответствует неопределенности величины Е, равной ±0,5 Мэв. Цифрами у кривых показаны соответствующие значения E<sub>0</sub> в Мэв.

неопределенности величины энергии обрезания Е , равной в нашем случае 1,0 ± 0,5 Мэв. Согласие между каскадными кривыми имеет место только в области малых толщин с.

В заключение пользуемся случаем поблагодарить Н.В. Демину, А.И. Токарскую и Е.А. Шваневу за помощь в выполнении расчетов.

#### Литература

1. И.П. Иваненко. ЖЭТФ, <u>32</u>, 491 (1957).

2. D.F. Crawford, H. Messel. Phys. Rev., 128, 2352 (1962).

1. 14 M 18

3. В.П. Агафонов, Б.Б. Говорков, С.П. Денисов, Е.В. Минарик. П Т Э, 5, 47 (1962).

4. W. Blocker, R.W. Kenney, W.K.H. Panofsky. Phys. Rev., 29, 3 (1950).

5. О.А. Займидорога, Ю.Д. Прокошкин, В.М. Цупко-Ситников. Препринт ОИЯИ, Р-2633, Дубна, 1966.

- 8. H. Lengeler, W. Tejessy, M. Deutschman. Z. Physik, 175, 283 (1963).
- 7. E.E. Beklin, J.A. Earl. Phys. Rev., 136, B237 (1964).
- 8. M. Thom. Phys. Rev., 136, B447 (1964).
- 9. C.A. Heusch, C.Y. Prescott, Phys. Rev., 135, B, 772 (1964).
- 10. О.А. Займидорога, Ю.Д. Прокошкин, В.М. Цупко-Ситников. Препринт ОИЯИ, Р-2846, Дубна, 1966.
- 11. H. Devis, H.A. Bethe, L.C. Maximon. Phys. Rev., 93, 788 (1954).
- 12.E. Malamud. Phys. Rev., 115, 687 (1959).
- 13. J.L. Lawson, Phys. Rev., 75, 433 (1949).
- 14. J.W. Dewire, A. Ashkin, L.A. Beach. Phys. Rev., 83, 505 (1951).
- 15. A. Sørenssen. Nuovo Cim., 38, 745 (1965).
- 18. G.W. Grodstein, X-ray Attenuation Coefficients from 10 key to 100 MeV. NBS, Cr. 583(1957).
- 17.J.D. Anderson, Phys. Rev., <u>102</u>, 1626 (1956).
- 18. H.A. Bethe, W. Heitler. Proc. Roy.Soc. (London), A146, 83 (1934).
- 19. J.W. Dewire, L.A. Beach. Phys. Rev., 83, 476 (1951).
- 20. C.R. Emigh. Phys. Rev., 86, 1028 (1952).
- 21, R.R. Wilson, Phys. Rev., 86, 216 (1952).
- 22. О.И. Довженко, А.А. Поманский. ЖЭТФ, 45, 2(8), 268 (1965).

Рукопись поступила в издательский отдел 20 октября 1966 г.