

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

2062 2-80

P1 - 13055

НЕУПРУГИЕ ВЗАИМОДЕЙСТВИЯ ПРОТОНОВ ПРИ ИМПУЛЬСЕ 4,5 ГЭВ/С С ЯДРАМИ ФОТОЭМУЛЬСИИ

Сотрудничество: Алма-Ата - Бухарест - Дубна -Душанбе - Кошице - Ленинград - Москва -Ташкент - Улан-Батор

P1 - 13055

НЕУПРУГИЕ ВЗАИМОДЕЙСТВИЯ ПРОТОНОВ ПРИ ИМПУЛЬСЕ 4,5 ГЭВ/С С ЯДРАМИ ФОТОЭМУЛЬСИИ

Сотрудничество: Алма-Ата - Бухарест - Дубна -Душанбе - Кошице - Ленинград - Москва -Ташкент - Улан-Батор

Ooseen and Incrary AREAD INCLEMENTED **ENGINOTERA**

Банник Б.П. и др.

P1 - 13055

Неупругие взаимодействия протонов при импульсе 4,5 ГэВ/с с ядрами фотоэмульсии

В неупругих столкновениях протонов при импульсе 4,5 ГэВ/с с ядрами фотоэмульсии получены данные, включающие множественность ливневых частиц, энергетический спектр быстрых вторичных протонов со средней энергией /2,5+0,1/ГэВ и энергетический спектр рожденных заряженных пионов со средней энергией /640+50/МэВ. Определены также множественность, угловые распределения и энергия частиц, полученных в результате расщепления ядер мишеней, причем спектр протонов аппроксимируется степенной зависимостью $E^{-\gamma}$ при $\gamma = 1, 4+0, 1$. Получено распределение протонов и π -мезонов

по быстротам $y = \frac{1}{2} ln \frac{E-p}{E+p}$.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1980

Bannik B.P. et al.

P1 - 13055

Inelastic Interactions of Protons with Photoemulsion Nuclei at 4.5 GeV/c

In inelastic collisions of protons with photoemulsion nuclei at 4.5 GeV/c data have been obtained on multiplicity of shower particles, energy spectrum of fast secondary protons with (2.5±0.1) GeV average energy and energy spectrum of produced charged pions with (640±50) MeV average energy. The multiplicity, angular distributions and energy of particles arising from splitting target-nuclei are also determined, proton spectrum being approximated by the degree dependence $\mathbf{E}^{-\gamma}$ at $\gamma = 1.4\pm0.1$. Distributions of

protons and π -mesons over rapidities $y = \frac{1}{2} \ln \frac{E-p}{E+p}$ have been obtained.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1980

© 1980 Объединенный институт ядерных исследований Дубна

В ряде предыдущих работ ^{/1-5/} исследовались взаимодействия ² H, ⁴He, ¹²C с ядрами фотоэмульсии при импульсе ускоренных ядер 4,5 ГэВ/с на нуклон. Представляет самостоятельный интерес более развернутый анализ результатов, требующий знания характеристик столкновений протонов с ядрами при том же начальном импульсе.

В настоящем эксперименте слои фотоэмульсий БР-2 ГОСНИИ-ФОТОПРОЕКТА размером 10x20 см² и толщиною 600 мкм были облучены протонами с импульсом 4,5 ГэВ/с на синхрофазотроне ОИЯИ. Плотность облучения составляла 2·10⁴ протонов на см². Поиск взаимодействий производился вдоль следов протонов. К упругим взаимодействиям отнесены события типа 0+0+1 с углом релятивистского следа $\theta < 5^{\circ}$. Средний пробег до неупругого взаимодействия оказался равным $\lambda = 30, 2+0, 7$ см. Вторичные частицы разделялись на s,g и b по принятым в фотоэмульсионной методике критериям: s - релятивистские частицы с относительной ионизацией $g/g_0 < 1.4$ (g₀ - плотность ионизации на следе первичных протонов); g - частицы с $g/g_0 \ge 1.4$ и с пробегом в фотоэмульсии R>3000 мкм, что соответствует энергии протона 26 МэВ; b частицы, имеющие пробег R < 3000 мкм.

Идентификация b-частиц по зарядам проводилась для следов с наклоном менее 30° к плоскости непроявленной эмульсии по числу разрывов в следе в зависимости от остаточного пробега. Калибровочные зависимости были получены на следах π -мезонов, протонов, α -частиц и ядер ⁸Li. При идентификации учитывался угол наклона следа и его местонахождение в фотослое ^{/7/}.На следы с углом наклона более 30° вводилась геометрическая поправка.

МНОЖЕСТВЕННОСТЬ ВТОРИЧНЫХ ЧАСТИЦ

В табл.1 приведены средние множественности частиц для событий с различным числом сильноионизирующих частиц N_h = n_g + n_b. В группу с N_h \leq 6 входят взаимодействия с легкими ядрами эмульсии и периферические взаимодействия с тяжелыми ядрами, а группу с N_h \geq 7 образуют события, происшедшие только на тяжелых ядрах фотоэмульсии.

На puc.1 и 2 представлены матрицы $n_{g} - N_{h}$ и $n_{g} - n_{b}$, проекции которых представляют собою соответствующие распределения

Таблица 1								
	< n _g >	<n g=""></n>	<n b=""></n>	<n h=""></n>	Члсло соби-			
$N_{h} \ge 0$	I,63 <u>+</u> 0,02	2,84+0,06	3,79 <u>+</u> 0,09	3,3340,14	2126			
$N_{\rm h} \leq 6$	I,69 <u>+</u> 0,03	I,I8 <u>+</u> 0,03	I,37 <u>+</u> 0,04		1527			
$N_h \ge 7$	I,53 <u>+</u> 0,04	5.57+0,70	7,79 <u>+</u> 0,I3		9 01			

по множественности. Заметим, что вклад событий практически полного разрушения ядер Ag, Br (N $_{\rm h} \ge 28$) весьма невелик и составляет 0,5%. При энергиях налетающих протонов 6,2 и 22 ГэВ вклад таких событий составляет 2,2% и 3,2% соответственно $^{/6/}$.

На puc.3-6 приведены корреляции множественности $<{\rm n}_i>=f({\rm n}_j)$ и их аппроксимация линейной зависимостью $<{\rm n}_i>={\rm a}+{\rm kn}_j$. Значения коэффициентов наклона k даны в maca.2. Обращает на себя внимание слабое уменьшение $<{\rm n}_s>$ с ростом числа сильноионизирующих частиц в событии, что может служить указанием на отсутствие заметного мезонообразования во вторичных процессах и на выбывание релятивистских частиц с уменьшением параметра столкновения в результате рассеяния.

Из *рис.6* можно видеть, что степень расщепления ядра-мишени не зависит от числа s-частиц в событии. Исключение составляют события с п_s = 0, которые, по-видимому, с большей вероятностью происходят при взаимодействиях с тяжелыми ядрами эмульсии. Это обстоятельство следует проверить в эксперименте на эмульсиях разного состава.

Puc.1. Матрица распределений по множественности n_s - N_h.

5=	101		200	-	(72	-	100	-	50	-	20	-	47	-	12	-	1	9128
21	1	-			-	-	-		-	-	4	-	-	-	-	-	-	+
20	1		-	-	-	-	-	-			1	11	-	-	1	-	-	11
19	1	-		-	-	1					1	1	-	-	1	-	-	2
18				-		1	1	1			1	2	-		-	1	-	5
17							2	1	1		1		-	-	-	1-	-	4
16					2	2	2		2	1	1		-	1	1-	1	1	11
15				1		1	1	3	4	1	5	3	1 -		1	-	L	20
14				3	2	3	6	3	2	3		1	1					24
13		1	2	2	3	4	2	3	2	2		2		1	1	1	1	25
12				2	4	6	5	5	7	6	3	1	4	1				44
11	1		1	2	3	9	6	11	5	6	2	2	1					49
10		2	1	5	6	7	7	5	1	6	3	4	2					55
9	2	1	3	6	7	6	11	10	3	3	2	2	1		1		1	59
8	1	1	6	11	6	14	8	9	5	3	2	1						67
7		8	13	7	21	10	16	6	7	2	1		2	1				94
6	5	12	12	17	19	9	7	8	7	2	2		3					103
5	10	10	13	13	18	8	6	5	3	2	5		2					105
4	22	32	34	31	20	12	5	2	4	2	3		1					167
3	36	62	57	57	19	11	8	5	2	-	1							238
2	L.	67	59	43	23	13	6	6	1	1	1							267
1	-	13	52	27	16	6	2	il	1	-	-		-					285
0	212	213	41	19	4	5	-	1	-	1	-	-	-					502
2	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	<u>Σ</u> =

Рис. 2. Матрица распределений по множественности ng-nb.

4

Puc.4. Корреляции между $< n_{g} > , < n_{g} > , < N_{h} >$ от n_{b} .

Puc.6. Корреляции между <n $_g$ >, <n $_b$ >, <N $_h$ > от n $_g$; фит производился для n $_s \ge 1$.

Таблица 2									
k	<n<sub>8></n<sub>	<ng></ng>	<n b=""></n>	<n h=""></n>					
ns		-0,04+0,04	0,0I <u>+</u> 0,04	-0,03 <u>+</u> 0,06					
ng	-0,06 <u>+</u> 0,01		I,C <u>9+</u> 0,02	I,97 <u>+</u> 0,02					
nb	-0,03 <u>+</u> 0,01	0,5I <u>+</u> 0,0I		I,52 <u>+</u> 0,02					
Nh	-0,02 <u>+</u> 0,00	0,40 <u>+</u> 0,0I	0,60 <u>+</u> 0,0I						

УГЛОВЫЕ ХАРАКТЕРИСТИКИ ВТОРИЧНЫХ ЧАСТИЦ

Удобными для анализа характеристиками s-частиц являются величины половинного угла $\Theta_s 1/2$ и распределение по $\eta_s = -\ln tg \frac{\Theta_s}{2}$. Для g-частиц мы использовали $\Theta_g 1/2$ и $<\cos\Theta_g>$, для b-частиц - величину отношения F/B числа частиц, испущенных в переднюю и заднюю полусферы. На *рис.* 7 представлены распределения по η_s , а в *табл.* 3 даны значения угловых характеристик для различных интервалов множественности N_b.

Из таблицы следует, что с ростом степени расщепления ядрамишени расширяется угловое распределение s-частиц, тогда как для g-частиц эта тенденция значительно менее выражена.

6

Таблица 3									
N _h :	<u><</u> 6	7-15	<u>> 16</u>	<u>≥</u> 7	<u>></u> 0				
θ_{s} 1/2, rpag	19,0+0,7	52,4+I,9 -I,3	47,3+2,6	55,8+I,9 -I,5	24,4+0,8				
η _s θ _g 1/2,град	I,85 <u>+</u> 0,02 60,6 ⁺ I,9 60,6 ⁻ I,9	I,2I <u>+</u> 0,03 64,5 ⁺ I,5 -2,I	0,80 <u>+</u> 0,05 66,5 ^{+I,4} -I,0	1,10 <u>+</u> 0,03 65,5 ⁺¹ .2 -1,5	I,57 <u>+</u> 6,62 63,8+I,5 -I,0				
$\langle \cos \theta_g \rangle$ (F/B) b (F/B) (F/B) (F/B) (F/B)	0,37 <u>+</u> 0,01 I,29 <u>+</u> 0,06 I,2 <u>+</u> 0,2 2,0 <u>+</u> 0,4	I 0,3I <u>+</u> 0,03 I,3I <u>+</u> 0,04 I,I <u>+</u> 0,I I,5 <u>+</u> 0,3	I 0,28 <u>+</u> 0,03 I,23 <u>+</u> 0,04 I,0 <u>+</u> C,I I,2 <u>+</u> 0,2	I 0,50 <u>+</u> 0,03 I,27 <u>+</u> 0,05 I,04 <u>+</u> 0,68 I,35 <u>+</u> 0,15	I 0,32 <u>+</u> 0,0I I,27 <u>+</u> 0,05 I,I <u>+</u> 0,1 I,43 <u>+</u> 0,14				

Puc.7. Распределение по $\eta_{\rm B} = -\ln {\rm tg}(\theta_{\rm B}/2)$ для различных групп событий по N_b.

Отношение F/B для протонов в звездах с различными N_h практически равно единице: для a-частиц наблюдается некоторая анизотропия во всех группах событий. Отметим, что в угловых распределениях медленных протонов и a-частиц не наблюдается статистически обеспеченных нерегулярностей.

ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВТОРИЧНЫХ ЧАСТИЦ

Импульсы s-частиц измерялись методом многократного рассеяния на 354 следах с углами наклона к плоскости фотослоя до 5° или до 10° с последующим введением геометрических поправок на эти ограничения.

В дальнейшем производилось разделение измеренных s-частиц на протоны и пионы. Отбор s-частиц по критерию g/g_0<1,4 исключает вклад протонов в область $p\beta \leq 680$ МэВ/с. Разделение частиц в области $p\beta > 680$ МэВ/с проводилось статистически с учетом спектра пионов до этой границы.

На рис.8 показан спектр р β , пунктиром нанесен спектр протонов и пионов в области р β > 680 МэВ/с. Средние энергии оказались равными:

оказались равными. $\langle E_{\pi} \rangle = /642+50/$ МэВ и $\langle E_{p} \rangle = /2536+120/$ МэВ. Распределения протонов и π -мезонов по быстротам $y = \frac{1}{2} \ln \frac{E-p}{E+p}$ даны на *рис.9*.

Рис.8. Распределение по $p\beta$ для всех измеримых s-частиц и отдельно – для протонов и пионов в области $p\beta > 680$ MэB/с.

Рис.9. Распределение по быстроте $y = \frac{1}{2} \ln \frac{E - p}{E + p}$ для пионов и протонов среди s-частиц.

Определение энергии g-частиц /в предположении, что они являются протонами/ производилось или по пробегу или по измерению относительной ионизации g/g_0 . Энергетический спектр g-частиц, показанный на *puc.10*, может быть аппроксимирован степенной зависимостью $E^{-\gamma}$, где $\gamma = 1,4+0,1$. При увеличении N_h наблюдается некоторое смягчение спектра, что согласуется с изменением угловых характеристик g-частиц.

Определение энергии b -частиц производилось по пробегу с использованием зависимостей $E = f(R_{p_{e},\alpha})$.

В табл.4 представлены средние значения энергии g-и b-частиц для различных групп N_h . Там же приведены значения $(a/p)_b$. Можно указать на некоторое увеличение $\langle E_p \rangle$ и $\langle E_a \rangle$ для звезд с $N_h \ge 7$, что, по-видимому, обусловлено влиянием кулоновско-го барьера. При уменьшении параметра столкновения с тяжелыми ядрами /при росте N_h / энергетические спектры b-частиц не-сколько расширяются как в сторону бо́льших, так и в сторону ме́ньших энергий /рис.11/.

Таблица 4 ≥ 0 N_h: ≤ 6 7-15 >16 <E $_{g}>$, МэВ I22<u>+</u>5 IIU+4 I03+5 II2+3 <E _> b , M3B 8,8+0,4 10,4+0,3 9,7+0,4 5,7+0,2 IS,4+I,7 $\langle \mathbf{E}_{\alpha} \rangle_{\mathbf{b}}$, МэВ 23,5+I,5 23,5+I,3 22,6+0,8 $(a/p)_{\rm b}$ 0,44+0,05 0,4+0,04 0,55+0,05 0.46+0.03

Puc.11. Энергетический спектр медленных α -частиц /a/ и протонов /б/ в событиях с различным числом сильноионизирующих частиц N_b.

11

Авторы выражают благодарность коллективу синхрофазотрона и группе С.И.Любомилова за помощь в проведении эксперимента, а также лаборантам, участвовавшим в просмотре снимков и измерениях.

ЛИТЕРАТУРА

- 1. Богачев Н.И. и др. ОИЯИ, Р1-6877, Дубна, 1972.
- 2. Galstyan J.A. et al. Nucl. Phys., 1973, A208, p.626.
- 3. Сотрудничество. ОИЯИ, Р1-8313, Дубна, 1974.
- 4. BVDKLMT Collaboration. Acta Phys.Slov., 1978, 28, p.132.
- 5. Адамович М.Н. и др. ОИЯИ, Е1-10838, Дубна, 1977.
- 6. Winzeller J. Nucl. Phys., 1965, 69, p.661.
- 7. Серебренников Ю.И. Научн.-техн. инф. бюлл. №12, физ.-мат. науки. Изд. ЛПИ им. М.И.Калинина, 1957.

Рукопись поступила в издательский отдел 29 декабря 1979 года.