

21/4-80 P1 - 12982

сообщения

института

ядерных

дубна

СРАВНЕНИЕ НЕКОТОРЫХ ИНКЛЮЗИВНЫХ ХАРАКТЕРИСТИК рр-ВЗАИМОДЕЙСТВИЙ ПРИ ИМПУЛЬСЕ 22,4 ГэВ/с С ПРЕДСКАЗАНИЯМИ КВАРК-ПАРТОННОЙ МОДЕЛИ

P1 - 12982

СРАВНЕНИЕ НЕКОТОРЫХ ИНКЛЮЗИВНЫХ ХАРАКТЕРИСТИК pp-ВЗАИМОДЕЙСТВИЙ ПРИ ИМПУЛЬСЕ 22,4 ГэВ/с С ПРЕДСКАЗАНИЯМИ КВАРК-ПАРТОННОЙ МОДЕЛИ

Батюня Б.В. и др.

P1 - 12982

Сравнение некоторых инклюзивных характеристик pp — взаимодействий при импульсе 22,4 ГэВ/с с предсказаниями кварк-партонной модели

Инклюзивные характеристики pp-взаимодействий при импульсе 22,4 ГэВ/с сравниваются с помощью коллективных переменных с предсказаниями кварк-партонной модели. Модель качественно описывает экспериментальные данные в отличие от модели цилиндрического фазового объема. Обсуждаются возможные пути дальнейшей модификации кварк-партонной модели.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследования. Дубна 1980

Batyunya B.V. et al.

P1 - 12982

Comparison of Some Inclusive Characteristics of pp Interactions at 22.4 GeV/c Momentum with the Predictions of the Quark-Parton Model

Inclusive characteristics of pp interactions at 22.4 GeV/c momentum are compared with the predictions of the quark-parton model using collective variables. The model describes qualitatively the experimental data in contrast to the cylindrical phase space model. Possible ways of further modification of the quark-parton model are discussed.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1980

© 1980 Объединенный институт ядерных исследований Дубна

К настоящему времени уже накоплена значительная информация о множественном рождении частиц. Динамика множественного рождения настолько сложна, что выделение и рассмотрение отдельной группы данных вряд ли может привести к более глубокому пониманию процесса. Поэтому модели, основанные на генерации событий по методу Монте-Карло, представляются особенно удобными для сравнения результатов, полученных при простых теоретических предположениях, с широким набором экспериментальных данных.

Сравнение некоторых инклюзивных и полуинклюзивных распределений pp-взаимодействий при импульсе 22,4 ГэВ/с с предсказаниями кварк-партонной модели ^{/1/} уже проводилось в работе^{/2/}. Было показано, что модель неплохо описывает экспериментальные одночастичные инклюзивные характеристики. Поэтому имеет смысл провести анализ, в рамках этой модели, более сложных коллективных характеристик pp-взаимодействий, таких, например, как многочастичные корреляции. Подобный анализ может оказаться полезным для дальнейшего развития кварк-партонной модели.

Используемая нами модель моделирования событий /1/ основана на следующей интуитивной картине процессов при высоких энергиях /см. также /8-5/ /. Реакция начинается с взаимодействия морских кварков, затем оба адрона возбуждаются. глюоны превращаются в кварк-антикварковые пары, которые обогащают море, и, наконец, соседние по быстротам кварки рекомбинируют по законам SU(6) - симметрии в стабильные адроны или резонансы. На последней стадии резонансы изотропно распадаются в соответствии с экспериментальными вероятностями разных мод распада. В качестве распределения параметров партонов внутри начальных адронов используются функции Кути-Вайскопфа /6/. Рождение странных кварков подавляется с помощью феноменологического фактора $\lambda = s/u = 0,22$. Таким образом, каждой конфигурации генерированных партонов присваивается вес

$$\frac{dW_{N}(y_{1}, \vec{p}_{T1}, ..., y_{N}, \vec{p}_{TN}) \sim G^{n} W_{id} V(X_{1}, X_{2}, X_{3}) V(X_{4}, X_{5}, X_{6}) \times}{\times \exp(-\sum_{1}^{N} p_{Ti}^{2}/R^{2}) \delta(\sum_{1}^{N} \vec{p}_{1}) \delta(E - \sum_{1}^{N} E_{1}) \prod_{1}^{N} dy_{1} d^{2} p_{Ti}},$$
 /1/

где $\vec{p}_i, p_{Ti}, y_i, E_i$ - импульс, поперечный импульс, быстрота и энергия i -ого партона соответственно; N - полное число партонов /N = 6 + 2n, где n - число морских кварков/; G - параметр, регулирующий среднюю множественность партонов; W id - фактор, вводимый для идентичных партонов * и V(X_i,X_j,X_k)-фактор для валентных кварков V(X_i,X_j,X_k) = (|X_i|·|X_i|·|X_k|)^{-/2}, /X_i - относительные доли импульсов сталкивающихся адронов в с.ц.м., уносимые валентными кварками/. Быстроты и импульсы партонов генерируются в соответствии с простой моделью цилиндрического фазового объема ⁷⁷. Следует отметить, что в рассматриваемой модели эффект наличия лидирующих частиц учтен с помощью факторов V(X_i,X_i,X_k) в /1/.

Надо указать на ограничения рассматриваемой модели: 1/ процесс дифракционной диссоциации ею не описывается; 2/ в модели учтена только рекомбинационная часть аннигиляции, т.е. ~50% полного аннигиляционного сечения; 3/ пренебрегается бозе-симметрией тождественных частиц в конечном состоянии: 4/ образующиеся адроны являются членами только низших SU(6) мультиплетов с весами, взятыми из работы /8/; 5/ при рекомбинации кварков в адроны энергия сохраняется только приближенно /рекомбинируют соседние по быстроте кварки/. Это приводит к слишком большой величине отношения прямо рождаемых р-мезонов к л-мезонам, равной ~3. Как было показано в работе /9/, учет сохранения энергии в процессе слияния типа Дрелла-Яна может изменить это отношение до значения 0,3. Массовый фактор 1/m · m _ , который появляется в результате таких расчетов, следует, однако, понимать как феноменологический, поскольку неясно, каким образом можно пренебречь виртуальностью кварков при таких малых массах, как то и то. Все эти ограничения модели следует иметь в виду при сравнении ее предсказаний с экспериментальными данными.

В разделе 1 коротко описывается процедура обработки экспериментальных данных, в разделе 2 обсуждается структура распределения импульсов вторичных частиц в pp-взаимодействиях, в разделе 3 сформулированы основные выводы.

1. Процедура обработки экспериментальных данных

Обсуждаемые в статье результаты были получены на статистике ~24000 событий с множественностью заряженных частиц 4, 6, 8, 10, полученных при облучении водородной камеры "Людмила" пучком антипротонов с импульсом 22,4 ГэВ/с. События обсчитывались по программам геометрической реконструкции МDTHRESH или HYDRA. Подробности обработки экспериментальных данных публиковались ранее в работах $^{10,11/}$. Частицы с импульсом в лабораторной системе $P_{\rm Лаб.} < 1,5$ ГэВ/с идентифицировались визуально по оценке плотности ионизации. Быстрые частицы с фейнмановской переменной x >0,66 считались антипротонами. Последний критерий основан на использовании

СР- симметрии нашей реакции, а именно, на сравнении отраженных спектров π^+ -мезонов и протонов со спектрами отрицательных частиц в системе центра масс. Примесь протонов, антипротонов и каонов в спектрах π -мезонов после применения такой процедуры составляет соответственно 5%, 12% и 2,5%.

2. Изучение структуры взаимодействий в импульсном пространстве

Метод изучения конфигураций частиц в импульсном пространстве в процессах множественного рождения был предложен в работе^{/12/} и использован при поиске выстроенности импульсов частиц в адронных ^{/13,14/} и е⁺е⁻-взаимодействиях ^{/15,16/}.

Для того, чтобы найти систему главных осей, для каждого события необходимо диагонализировать тензор вида:

$$\Gamma^{\alpha\beta} = \sum_{i=1}^{n_{ch}} (\delta^{\alpha\beta} \overrightarrow{p}_{i}^{2} - p_{i}^{\alpha} p_{i}^{\beta}), \qquad (2/$$

где п _ число заряженных частиц, p _ i - компоненты импульса i-той частицы в системе центра масс и $a, \beta = 1,2,3$. Если упорядочить собственные значения тензора следующим образом $\lambda_1 > \lambda_p > \lambda_3$, то сферичность S определяется как

Ось \vec{e}_8 /относящаяся к λ_8 /, по отношению к которой сумма квадратов поперечных импульсов минимальна, является главной осью. Основная плоскость определяется векторами \vec{e}_8 и \vec{e}_2 /<u>рис.</u> 1/. Направление пучковой частицы задано в системе главных осей полярным углом Θ_B и азимутальным углом ϕ_B /см. <u>рис.</u> 1/. Для изучения структуры событий в импульсном пространстве, кроме сферичности S используются также величины /15/

$$Q_{a} = 1 - \frac{2\lambda_{a}}{\sum_{\alpha} \lambda_{\alpha}} = \frac{\sum_{i} p_{iL}^{2}}{\sum_{i} p_{i}^{2}}, \qquad (4)$$

4

5

^{*}В используемой нами версии модели этот фактор завышен /см. $^{/1/}$ /, что повлекло за собой нестандартное значение параметра подавления рождения странных кварков $\lambda = 0,22$, вместо обычно применяемого $\lambda = 0,4 \div 0,5$.

где р_{iL} - продольная компонента импульса относительно главной оси и $\sum_{\alpha} Q_{\alpha} = 1$, $Q_1 \le Q_2 \le Q_3$. На двумерной диаграмме Q_1 vs $(Q_3 - Q_2)/\sqrt{3}^{\alpha}$ все события будут находиться в заштрихованной области треугольника с высотой, равной 1 /рис. 2/. Для сферических, дискообразных или двухструйных конфигураций события будут концентрироваться в одном из углов треугольника, как это показано на рис. 2. Для изучения выстроенности поперечных импульсов частиц в событии вводится планарность

$$P = \frac{2\lambda_3}{\lambda_3 + \lambda_3}, \quad (\lambda_3 < \lambda_2)$$
 /5

с помощью собственных значений тензора $T^{a\beta}$, где $a,\beta=2.3$.

шар

О диск

Рис. 2. Двумерная диаграмма $Q_1 v_8 (Q_3 - Q_2)/\sqrt{3}$. Заштрихованным треугольником показана кинематическая область для величин Q_1 и $(Q_3 - Q_2)/\sqrt{3}$.

<u>Рис. 3</u>. Среднее значение планарности в зависимости от множественности заряженных частиц для экспериментальных событий (P_{exp}), для экспериментальных событий без пар из области интерференции (P'_{exp}), для событий, сгенерированных по модели цилиндрического фазового объема (P_{CPM}), ^{/7/}и событий, сгенерированных по кварк-партонной модели (P_{QPM}) ^{/1/}. Средние значения экспериментальной сферичности S_{exp} и сферичности S_{QPM} для событий, сгенерированных по кварк-партонной модели.

и планарности $< P_{QPM} > для событий, сгенерированных по кварк-$ партонной модели (QPM) 1. Планарность Р для совокупностиэкспериментальных событий всегда меньше, чем для сгенерированных. Это означает, что реальные события являются в среднем более выстроенными. Из рис. 3 видно также, что разница между $< P_{QPM} > u < P_{exp} > для n_{ch} < 10$ значительно меньше, чем между $< P_{CPM} > u < P_{exp} > .$ Действительно, как видно из рис. 4, кварк-партонная модель вполне удовлетворительно описывает экспериментальные дифференциальные спектры dN/dP. Если из набора экспериментальных событий исключить события, в которых присутствуют пары частиц из области интерференции*/17/ то разница между значением планарности для оставшихся событий < P' > и < P > немного уменьшится для n < 8. Интересно отметить, что лучшее согласие между предсказаниями кварк-партонной модели и экспериментальными значениями планарности существует для небольших множественностей (neh=4и6). Это и не должно удивлять, так как значительная часть событий с большими множественностями относится к аннигиляционным каналам, а вклад аннигиляции учтен в кварк-партонной модели лишь частично. К тому же для n ch >6 может быть существен-

* Пары с $\mathbf{q}_{\mathrm{T}} < 0,2$ ГэВ/с и $\mathbf{q}_{0} < 0,1$ ГэВ/с², где $\mathbf{q} = (\mathbf{q}_{0}, \vec{\mathbf{q}}_{\mathrm{T}}) = \mathbf{p}_{1} - \mathbf{p}_{2}$, разность четырехимпульсов частиц и $\vec{\mathbf{q}}_{\mathrm{T}} -$ компонента $\vec{\mathbf{q}}_{1}$, пер-пендикулярная к суммарному импульсу $\vec{\mathbf{p}}_{1} + \vec{\mathbf{p}}_{2}$ пары частиц.

/

Рис. 4. Распределение по планарности для экспериментальных событий /гистограмма/ и для событий, сгенерированных по кварк-партонной модели /кривая/ для множественностей заряженных частиц n_{cb} = 4,6,8 и 10.

ным рождение тяжелых резонансов из высших SU(6) -мультиплетов, которым в модели пренебрегается. Процессы дифракционной диссоциации, которыми также пренебрегается в модели, дают вклад, в основном, в 2-лучевые события ^{/18/}. В заключение можно сказать, что наблюдаемая выстроенность поперечных импульсов частиц довольно хорошо описывается кварк-партонной моделью для множественностей 4, 6 и 8 /бо́льшая выстроенность экспериментальных событий связана с эффектом симметрии Бозе-Эйнштейна и не описывается цилиндрическим фазовым объемом. Напомним, что в K р-взаимодействиях при импульсе 8,25 ГэВ/с и в *п*р-взаимодействиях в области 4-25 ГэВ/с^{/13/} наблюдаемая величина планарности также отличается от предсказаний модифицированной модели цилиндрического фазового объема.

На рис. 3 приводится также зависимость от множественности средних значений сферичности <S $_{\rm exp}$ > и <S $_{\rm QPM}$ > ; видна значи-

тельная разница между этими величинами. Наблюдается также различие и между дифференциальными распределениями dN/dS в эксперименте и в кварк-партонной модели /<u>рис. 5</u>/. Меньшее значение сферичности, предсказываемое кварк-партонной моделью, соответствует более резкой выстроенности импульсов частиц в сгенерированных событиях по сравнению с экспериментом.

Рис. 5. Распределение по сферичности для экспериментальных событий /гистограмма/ и для событий, сгенерированных по кваркпартонной модели /кривая/, для множественностей заряженных частиц n_{ch}= 4,6, 8 и 10.

Линии равных плотностей на двумерной диаграмме Q₁vs $(Q_3-Q_2)/\sqrt{3}$ для экспериментальных и сгенерированных событий показаны на <u>рис. 6-8</u>. Четко выраженные диско- или сферообразные конфигурации не наблюдаются ни в моделированных событиях, ни в эксперименте. Экспериментальные и моделированные события сосредоточены вблизи "двухструйной" области. С возрастанием множественности n_{ch} максимумы распределений сдвигаются к меньшим $(Q_3-Q_2)/\sqrt{3}$ и большим величинам Q_1 . Это означает, как и следовало ожидать, что экспериментальные и моделированные события становятся более сферичными или дискообразными с ростом множественности /<u>рис. 6-8</u>/. Концентрация событий вблизи двухструйной области более заметна

3

S

Рис. 6. Линии равных плотностей на двумерной диаграмме Q_1 и $(Q_3-Q_2)/\sqrt{3}$ для экспериментальных событий и событий, сгенерированных по кварк-партонной модели с $n_{ch} = 6$, отнормированные на 100%.

Рис. 7. Линии равных плотностей на двумерной диаграмме Q_1 и $(Q_3 - Q_2)/\sqrt{3}$ для экспериментальных событий и событий, сгенерированных по кварк-партонной модели с $D_{ch} = 8$, отнормированные на 100%.

для сгенерированных событий, чем для реальных. Это вполне соответствует ранее найденному различию между экспериментальной величиной сферичности и сосчитанной по модели. Напомним, что сферичность реальных событий в е⁺е⁻⁻взаимодействиях меньше, чем ожидается из расчетов по фазовому объему. Этот

Рис. 8. Линии равных плотностей на двумерной диаграмме Q₁ и $(Q_3-Q_2)/\sqrt{3}$ для экспериментальных событий и событий, сгенерированных по кварк-партонной модели с $n_{ch} = 10$, отнормированные на 100%.

факт связан с двухструйной структурой e^+e^- - аннигиляции в противоположность многоструйности адронных взаимодействий /шести струй в случае pp -аннигиляции при высоких энергиях/^{/19/}.Такая струйная структура частично учтена в кваркпартонной модели, поскольку конфигурации с лидирующими валентными кварками имеют большие веса, определенные через функции Кути-Вайскопфа в /1/. С другой стороны, уравнение /1/ не описывает рождения $q\bar{q}$ -пар с малым поперечным импульсом относительно оси струи. Поэтому в модели дается завышенное значение выстроенности импульсов вдоль оси реакции. Это может быть одной из причин малой величины сферичности в собы-

тиях, рассчитанных по модели. Следует подчеркнуть также, что распределение Кути-Вайскопфа партонов в протоне /антипротоне/ представляет собой весьма грубое приближение к действительности. Например, введение добавочного фактора $(1-X)^{\beta}$, $(\beta > 0)$ для каждого морского кварка ^{/2/} сдвигает морские кварки к меньшим значениям |X| и, следовательно, может повысить величину сферичности. К тому же предположение о фактори-зуемости кварковых переменных X и р может быть неверным.

Рассмотрим теперь угловое распределение $(\Theta_B \phi_B)$ оси пучка относительно системы главных осей. На рис. 9 приведены распределения $dN/d\cos\Theta_B$ для экспериментальных событий и событий, генерированных по кварк-партонной модели. Экспериментальные и модельные спектры имеют пик при $\cos\Theta_B=1$, но спектры генерированных событий существенно отличаются от экспериментальных. Это проиллюстрировано также и в табл.1,

10

11

Рис. 9. Экспериментальные распределения $dN/d\cos\Theta_B$ для $n_{ch} = 4,6,8$ и 10 /гистограмма/ и те же распределения для событий, сгенерированных по кварк-партонной модели /линии/. Оба распределения нормированы на полное число событий данной топологии.

T	a	бյ	N	14	a	1
-	-					_

	$N_1 (\cos \Theta_B \ge 0,$	9)	$N_2 (\cos \Theta_B < 0)$,9)
n _{ch}	Эксперимент	Модель	Эксперимент	Модель
4	77,3+0,1 64,7+0,1	89,6 89,2	22 ,7 35,3+0,1	10,4
8 10	53,9+0,1 45,8+0,2	83,8 86,6	46,1 <u>+</u> 0,1 54,2+0,2	16,2

где сравниваются экспериментальные значения доли событий N_1 с $\cos\Theta_B\!\geq\!0.9\,$ и N_2 с $\cos\Theta_B\!<\!0.9\,$ с соответствующими значениями, рассчитанными для генерированных событий. Модельные распределения меняются с ростом множественности лишь незначительно, в то время как экспериментальные спектры становятся шире при увеличении ${\rm n_{ch}}$. Ранее было найдено $^{/20/},$ что экспериментальные распределения по $\cos\Theta_B$ для ${\rm n_{ch}}{=}4$ и ${\rm n_{ch}}{=}6$ хорошо описываются с помощью суперпозиции двух экспонент

$$\frac{dN}{d\cos\Theta_{B}} = \frac{\alpha}{I_{1}} \exp[-a_{1}(1-\cos\Theta_{B})] + \frac{1-\alpha}{I_{2}} \exp[-a_{2}(1-\cos\Theta_{B})] . /6/$$

Это может указывать на присутствие двух разных механизмов в \bar{pp} -реакциях, например, неаннигиляционного /экспонента с большим наклоном/ и аннигиляционного /экспонента с меньшим наклоном/. Действительно, доля процессов, соответствующих экспоненте с меньшим наклоном, больше для n_{ch}=6, чем для n_{ch}=4 /<u>табл. 2</u>/. С другой стороны, распределение по $\cos\Theta_{\rm B}$ для генерированных событий хорошо описывается только одной экспонентой внутри интервала $\cos\Theta_{\rm B}$, приведенного в табл.2.

Таблица 2

n	_{ch} Интервал	1 a ₁	a 2	a	χ^2/NF
4	1-0,965	151,6+27,2	27,0+12,6	0,34+0,18	0,88
6	1-0,94	113,1+46,8	20,8+5,0	0,14+0,06	0,52

В связи с этим напомним, что в модели учитывается только около половины аннигиляционных событий. Недостаток генерированных событий в хвосте $\cos \Theta_B$ -распределения мог бы быть также скомпенсирован за счет упомянутой ранее модификации распределения кварков.

Распределение по углу ϕ_B изучалось в работах ^{/20,21/} и было найдено существенно отличающимся от равномерного с пиком при $\phi_B = 0$. Это означает, что пучковая частица имеет тенденцию лежать в основной плоскости. Такой эффект может возникать, например, в случае, когда большой полный угловой момент получается из относительно малых параллельных угловых моментов вторичных частиц. Из данных, приведенных на <u>рис.10</u>, видно, что распределение по ϕ_B , предсказанное в модели, является близким к экспериментальному, хотя в модели и не учитывается орбитальный момент группы частиц. Для дальнейшего исследования этой проблемы мы рассмотрели зависимость

Рис. 10. Отнормированное распределение $dN/d\Phi_B$ для экспериментальных событий, событий, сгенерированных по модели цилиндрического фазового объема /канал $\bar{p}p \rightarrow 8\pi\pi^{\circ}$ обозначен крестиками/, и событий, сгенерированных по кварк-партонной модели /точки/. Те же распределения для событий с хотя бы одной заряженной частицей с $p_T > 0,7$ ГэВ/с. Экспериментальное распределение $dN/d\Phi_B$ для событий со всеми $p_T < 0,5$ ГэВ/с.

спектров по $\phi_{\rm B}$ от поперечного импульса $p_{\rm T}$. На рис. 10 наблюдается сильное отклонение распределения по углу $\phi_{\rm B}$ от равномерного для событий, имеющих хотя бы одну заряженную частицу с р т > 0,7 ГэВ/с. С другой стороны, такая зависимость хорошо воспроизводится не только кварк-партонной моделью, но также и моделью цилиндрического фазового объема /7/. что указывает на кинематическое происхождение такого эффекта. Распределение по ϕ_{B} является близким к равномерному для событий с малым рт / рт < 0,5 ГэВ/с/. Поэтому тот факт, что кварк-партонная модель описывает распределения по ф в лучше, чем модель цилиндрического фазового объема, имеет довольно простое объяснение, а именно: кварк-партонная модель лучше описывает хвост р²/_т -спектра по сравнению с моделью цилиндрического фазового объема, в которой недооценивается доля событий с большими р /2/. В этой связи следует подчеркнуть, что чрезвычайно важно иметь хорошее описание одночастичных спектров какой-либо моделью, прежде чем приступать к сравнению более чувствительных коллективных переменных.

Проанализируем теперь подробнее события, в которых имеются заряженные частицы с большими $p_{\rm T}$. Введем угол a между двумя следующими плоскостями: первая определяется импульсом пучковой частицы и импульсом частицы с самым большим $p_{\rm T}$ в событии, вторая плоскость определяется импульсом пучковой частицы и импульсом частицы с самым большим $p_{\rm T}$. В событии, вторая плоскость определяется импульсом пучковой частицы и импульсом частицы с самым большим $p_{\rm T}$. В событии, вторая плоскость определяется импульсом пучковой частицы и импульсом частицы со следующим по величине наибольшим $p_{\rm T}$. Распределения по углу a всех генерированных событий и событий с $p_{\rm T} < 0,5$ ГэВ/с оказываются близкими к экспериментальным, как это видно из рис. 11. С другой стороны, практически равномерное распределение по a, наблюдаемое на эксперименте для событий с $p_{\rm T} < 0,5$ ГэВ/с, совсем не описыва-

ется моделью цилиндрического фазового объема. Итак, мы приходим к выводу, что основные черты распределений по $\phi_{\rm B}$ и а успешно предсказываются кварк-партонной моделью, но находятся в противоречии с моделью цилиндрического фазового объема. Тот факт, что две частицы с относительно большим p_T лежат, как правило, в одной плоскости с пучковой частицей, является, по-видимому, чисто кинематическим эффектом.

Рис. 11. Отнормированные распределения dN/da. Эксперимент /гистограмма/, кварк-партонная модель /точки/ и модель цилиндрического фазового объема /канал $\bar{p}p \rightarrow 8 \pi \pi^{\circ}$ - крестики/. Те же распределения для событий с $p_{\rm T} > 0,7$ ГэВ/с и $p_{\rm T} < 0,5$ ГэВ/с.

3. Выводы

В заключение сформулируем основные результаты:

1. Планарность событий удовлетворительно описывается кварк-партонной моделью $^{/1/}$ для множественностей $n_{ch} \leq 8$. Малое отклонение от модели наблюдается для $n_{ch} = 10$. С другой стороны, планарность событий, сгенерированных по модели цилиндрического фазового объема, значительно отличается от экспериментального значения.

2. Полуинклюзивные распределения по сферичности и полуинклюзивные двумерные Q_1 и $(Q_3 - Q_2)/\sqrt{3}$ распределения, наблюдаемые в эксперименте, существенно отличаются от распределений, полученных с помощью кварк-партонной модели. Конфигурации импульсов в реальных событиях соответствуют многоструйной структуре адронных взаимодействий. Экспериментальное значение среднего угла между пучком и главной осью больше по величине, чем значение такого же угла в событиях, сгенерированных по кварк-партонной модели. 3. Наблюдаемое в эксперименте, отклонение от равномерного распределения в спектрах $dN/d\phi_B$ описывается кваркпартонной моделью в отличие от модели цилиндрического фазового объема, что связано в основном с недооцененной долей событий с большими P_T в модели цилиндрического фазового объема. Тот факт, что две частицы с относительно большими p_T имеют тенденцию лежать в одной плоскости с пучковой частицей, имеет чисто кинематическое происхождение.

Авторы считают своим долгом выразить благодарность Я.Пишуту за его постоянный интерес к анализу экспериментальных данных, и К.Шафарику - за предоставление программы генерации событий по кварк-партонной модели, а также за помощь при ее отладке.

Литература

1.	Cerny V. et al. Phys.Rev., 1978, D18, p.2409.
2.	Lichard P. et al. Acta.Phys.Pol., 1979, B10, p.785.
3.	Anisovich V.V., Shekhter V.M. Nucl. Phys., 1973, B55,
	p.455. Anisovich V.V. et al.Nucl.Phys., 1973, B55, p.474.
4.	Bjorken J.D., Farrar G.R. Phys.Rev., 1974, D9, p.1449.
5.	Van Hove L., Pokorski S. Nucl. Phys., 1975, B86, p.243.
6.	Kuti J., Weisskopf V.F. Phys.Rev., 1970, D4, p.3418.
7.	Jadach S. Comp.Phys.Comm., 1975, 9, p.297.
8.	Ermilova D.I. et al. Nucl.Phys., 1978, B137, p.29.
9.	Князев В.В. и др. ОТФ 77-106, Серпухов, 1977.
10.	Abesalashvili L.N. et al. Phys.Lett., 1974, 52B, p.236.
11.	Boos E.G. et al. Nucl.Phys., 1977, B121, p.381.
12.	Bjorken J.D., Brodsky S.L. Phys.Rev., 1970, D1, p.1416.
13.	Kostka P. et al. Nucl. Phys., 1975, B86, p.1.
14.	Kakoulidou M. et al. Nucl.Phys., 1977, B130, p.189.
15.	Hanson G.G. et al. Phys.Rev.Lett., 1975, 35, p.1609.
16.	Weber G. Invited Talk given at IX Int.Symp. on High
	Energy Multiparticle Dynamics in Tabor, Czechoslovakia,
	July 2-7, 1978.
17.	Боос Э.Г. и др. яФ, 1978, 27, с.1556.
18.	Боос Э.Г. и др. ОИЯИ, Е1-9781, Дубна, 1976.
19.	Dias de Deus J. Nucl.Phys., 1977, B123, p.240.
20.	Боос Э.Г. и др. ОИЯИ, Е1-12487, Дубна, 1979.
21	Alinenko I.V. et al. Nucl. Phys., 1978, B135, p. 365.

Рукопись поступила в издательский отдел 4 декабря 1979 года.