

Объединенный институт ядерных исследований дубна

953 - 80

3/3-80 P1 - 12807

В.К.Бирулев, Г.Вестергомби, В.И.Генчев, Т.С.Григалашвили, Б.Н.Гуськов, В.Д.Кекелидзе, В.Г.Кривохижин, В.В.Кухтин, М.Ф.Лихачев, И.Манно, Х.-Э.Рызек, И.А.Савин, Л.В.Сильвестров, В.Е.Симонов, Г.Г.Тахтамышев, П.Т.Тодоров

ИЗУЧЕНИЕ РАСПАДОВ $\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} = \pi^{\pm} \mu^{\mp} \nu$

Бирулев В.К. и др.

P1 - 12807

Изучение распадов $K^{\circ} \rightarrow \pi^{\pm} \mu^{\mp} \nu$

С помощью бесфильмового искрового спектрометра, установленного на канале нейтральных частиц серпуховского ускорителя, было зарегистрировано ~150 000 распадов К°→ πµν. В рамках V-А теории изучалась зависимость формфакторов f, и f от квадрата 4-импульса, переданного лептонной паре. Для параметров линейного разложения найдены значения: λ_{\perp}^{μ} = 0,0427+0,0044, λ_{0} = 0,0341+0,0067. Значение параметра λ_0 сравнивается с различными теоретическими моделями. Сравнение параметра λ^{μ}_+ с аналогичным значением параметра λ_{\perp}^{e} , полученным из анализа распадов $K_{\perp}^{o} \rightarrow \pi e_{\nu}$, зарегистрированных в этом же эксперименте, указывает на возможное нарушение $\mu - \theta$ -универсальности в полулептонных распадах каонов.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Birulev V.K. et al.

P1 - 12807

Investigation of $\mathbb{K}^{\circ} \rightarrow \pi^{\pm} \mu^{\mp} \nu$ Decays

By means of a filmless spark spectrometer positioned on a channel of neutral particles of the Serpukhov accelerator about 150 000 $K_{L}^{\circ} \pi \mu \nu$ decays have been registered. Within V-A theory the dependence of f, and f form factors on 4-pulse squared transmitted to leptonic pair is studied. For parameters of linear expansion the following values have been found $\lambda_{+}^{\mu} = 0.0427 \pm 0.0044$, $\lambda_{0} = 0.0341 \pm 0.0067$. The value of λ_0 parameter is compared with different theoretical models. The comparison of λ_0^{μ} parameter with analogous value of λ_{+}^{0} parameter, obtained from analysing $K_1^\circ \rightarrow \pi e \nu$ decays, registered in this experiment, points to a possible breaking of μ - θ -universality in semileptonic kaon decays.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1979

1. ВВЕДЕНИЕ

Изучение матричного элемента распада $K_{L}^{\circ} = \pi^{\pm} \mu^{\mp} \nu / K_{M} 3 / K_{L}$ и сравнение его с матричными элементами других мод распада нейтральных и заряженных каонов позволяет, в принципе, проверить как некоторые аспекты теории слабых взаимодействий: V-А вариант взаимодействия, $\mu = e - универсальность, правило$ ∆I = 1/2, так и модели, относящиеся к сильным взаимодействиям: низкоэнергетические теоремы, алгебру токов, технику дисперсионных отношений и т.д.

Матричный элемент распада Км3 в общем случае записывается в виде:

$$M = \frac{G}{\sqrt{2}} \sin \theta_{c} \{ [M_{k} f_{s} + f_{+} (k + q)^{\mu} + f_{-} (k - q^{\mu})] \times$$

$$\times \overline{U}_{e} \gamma_{\mu} (1 + \gamma_{5}) U_{\nu} + \frac{f_{T}}{2M_{k}} (k^{\lambda} q^{\mu} - k^{\mu} q^{\lambda}) \overline{U}_{e} G_{\lambda \mu} (1 + \gamma_{5}) U_{\nu} \}.$$
71/

Здесь U "U, - лептонные спиноры, Q, k - 4-импульсы пиона и каона, f и f - скалярный и тензорный формфакторы, f, , f_ - векторные формфакторы, M + - масса каона, θ_c - угол Кабиббо.

В данной работе, так же как и в других /11-18/, показано, что преобладающую роль в Км3-распадах играет векторный вариант взаимодействия. В этом случае матричный элемент имеет вид:

$$M \sim U_{0} \gamma_{\mu} (1 + \gamma_{5}) U_{\nu} [f_{+}(t)(k + q) + f_{-}(t)(k - q)], \qquad /2/$$

где t - квадрат 4-импульса, переданного лептонной паре.

Обычно в качестве независимых формфакторов выбирают 1+ и f, которые определяются как:

 $f(t) = f_{+}(t) + \frac{t}{M_{k_{-}m_{+}}^{2}}f(t).$ Формфакторы f_{+} и f соответствуют состоянию лептонной пары со спином и четностью 1 и 0 * .

В первом приближении зависимость формфакторов от t может быть представлена в линейном виде:

$$f_{+}(t) = f_{+}(0)(1 + \lambda_{+} - \frac{t}{m\frac{2}{\pi}}), \qquad (4/$$

$$f(t) = f(0)(1 + \lambda_0 \frac{t}{m_{\pi}^2}).$$
 /5/

Здесь λ_+ и λ_0^- параметры наклона. В опытах по изучению поляризации моюнов в Км3-распадах измеряется отношение:

$$\xi(t) \equiv f_{-}(t)/f_{+}(t).$$
 /6/

Параметр ξ можно также представить в виде линейной функции:

$$\xi(t) = \xi(0) + \Lambda \frac{t}{m_{\pi}^2}$$
. /7/

Если формфакторы f_+ и f описываются линейными функциями, то параметры λ_+ , λ_- и ξ связаны соотношением:

$$\xi(t) = (M_k^2 - m_{\pi}^2)(\lambda_0 - \lambda_+)/m_{\pi}^2 (1 + \lambda - \frac{t}{m_{\pi}^2}).$$
 /8/

В дисперсионном подходе формфакторы f, и f аппроксимируются полюсными выражениями:

$$f_{+}(t) = f_{+}(0) \frac{M_{*}^{2}}{M_{*}^{2} - t}$$
, /9/

$$f(t) = f(0) - \frac{M_{\kappa}^2}{M_{\kappa}^2 - t}$$
 /10/

Предполагается, что f_+ и f удовлетворяют дисперсионным соотношениям /ДС/ без вычитаний. Физически это означает, что образование лептонной пары происходит через одночастичное состояние /узкий резонанс/ с массой и квантовыми числами $M_*, 1$ и $M_*, 0^+$.

Сравнивая выражения /9/ и /10/ с /4/ и /5/ и пренебрегая членами второго порядка по t, получим, что параметры λ_{+} и λ_{-} связаны с M $_{*}$ и M $_{\kappa}$ соотношением:

$$\lambda_{+} = m_{\pi}^{2} / M_{*}^{2}; \ \lambda_{0} = m_{\pi}^{2} / M_{\kappa}^{2}.$$
 /11/

Среди моделей, описывающих зависимость формфакторов от t, наиболее известной является модель Каллана-Треймана /КТ/ $^{/2/}$, основанная на использовании низкоэнергетических теорем, гипотез ЧСАТ и алгебры токов. Она устанавливает значение формфактора f в нефизической точке $t = M_{k}^{2} - m_{\pi}^{2}$:

$$f(M_{k}^{2}-m_{\pi}^{2}) = f_{k}/f_{\pi}$$
. /12/

Здесь f_k и f_{π} – формфакторы /константы/ распадов $K \rightarrow \mu\nu$ и $\pi \rightarrow \mu\nu$. Значение правой части уравнения /12/ известно из эксперимента: 1,27+0,03. Подставляя в левую часть выражение /5/, получим для параметра наклона величину $\lambda_0 = 0,023+0,003$

Общее предсказание теории относительно ξ состоит в том, что его величина должна быть пропорциональна первому порядку параметра нарушения SU(3)-симметрии, который определяется разностью масс странного и обычного кварков, то есть $\xi(0) = 10-30$ %, $\Lambda << 1^{/1/}$. Расчеты конкретных моделей приводятся в разделе 3.

Ниже излагаются результаты изучения ~150 000 Км3-распадов, зарегистрированных бесфильмовым искровым спектрометром, установленным на канале нейтральных частиц серпуховского ускорителя. Предварительные результаты работы были приведены в ^{/3,4/}.

2. УСЛОВИЯ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА И ОБРАБОТКА ДАННЫХ

2.1. Регистрация и отбор событий

Устройство канала и аппаратура искрового спектрометра подробно описаны в $^{5.'}$ Долгоживущие нейтральные каоны распадались в 9-метровом распадном объеме, наполненном гелием. Перед ним помещалась мишень-регенератор, заполненная жидким водородом или дейтерием, которая использовалась в проводимых одновременно экспериментах по изучению регенерации $K_{L,S}^{\circ}$ -мезонов $^{.6'}$. Регистрировались все моды распада K° -мезонов: $K_{L,S}^{\circ} + \pi \mu \nu$ /Km3/, $K_{L}^{\circ} + \pi e \nu$ /Ke3/, $K_{L}^{\circ} + \pi \pi \pi n^{\circ}$ /Кп3/ и $K_{L,S}^{\circ} + \pi^{+}\pi^{-}$ /Кп2/. Отметим, что это является существенным методическим преимуществом данного эксперимента, поскольку позволяет корректно учитывать фоновые эффекты при изучении каждой моды распада.

Для регистрации Км3-распадов в состав установки входил двухплечевой детектор мюонов, каждое плечо которого состояло из двух расположенных друг за другом блоков железа толщиной по 125 см, и двух сцинтилляционных годоскопов, включенных на совпадение ⁷. Информация о срабатывании мюонных годоскопов вместе с другой информацией от установки передавалась в ЭВМ и записывалась на магнитные ленты.

Программа геометрической реконструкции восстанавливала события типа "вилки", когда имелись два трека, выходящие из одной точки ⁸. Для векторного варианта взаимодействия плотность событий в области Далитца может быть записана в виде:

$$\frac{d^2 N}{dt dE_{12}} = Af_{4}^{2} + Bf_{4}f + Cf^{2}.$$
 /13/

Здесь E_{ν} - энергия нейтрино в с.ц.м., А.В.С- известные кинематические функции.

Данные о формфакторах получены путем сравнения распределения плотности событий в области Далитца для экспериментальных Км3-распадов и для распадов, моделированных методом Монте-Карло. Моделирование событий проводилось с учетом реальных условий эксперимента: кулоновского рассеяния заряженных частиц в веществе установки, эффективности срабатывания и пространственного разрешения искровых камер и восстановленного в этом же эксперименте импульсного спектра К°-мезонов ⁹. Учитывались радиационные поправки к матричному элементу и упругое рассеяние каонов в дейтерии для случая, когда в пучке стояла дейтериевая мишень-регенератор.

Моделированные события восстанавливались по той же программе геометрической реконструкции, что и экспериментальные события, и к ним применялись те же критерии отбора.

Критерии отбора событий включали следующие требования.

1/ Вершина вилки доп. на находиться в пределах распадного объема.

2/ Координаты треков должны находиться в пределах эффективных размеров элементов установки. Для исключения краевых эффектов эти размеры выбирались на 1,5-2 см меньше геометрических размеров соответствующих элементов.

3/ Сработавшие счетчики мюонного годоскопа должны лежать на продолжении трека заряженной частицы. Границы сработавшего счетчика выбирались с учетом многократного рассеяния мюона в железе.

4/ Исключались события, относящиеся к другим модам распада. Распады Ке3 исключались по срабатыванию детектора электронов. Для исключения распадов Кп2 требовалось, чтобы инвариантная масса двух заряженных частиц в предположении, что обе они являются пионами, лежала вне пределов 0,488 $\leq M_{\pi\pi} \leq 0,508$ ГэВ/с², куда попадают, с учетом разрешения установки по массе, распады К $_{L,S} \cdot \pi^4 \pi^-$. Распады Кп3 исключались с помощью кинематической переменной Р $_0^{-2}$ /9. Требовалось, чтобы Р $_0^{-2} \leq -0,004$ /ГэВ/с/ 2 .

5/ В соответствии с реальным импульсным спектром требовалось, чтобы восстановленный из Км3-распадов импульс К° – мезона лежал в пределах от 14 до 52 ГэВ/с.

6/ События должны удовлетворять кинематике Км3-распадов:

6/ Поперечные импульсы заряженных частиц не должны превышать 0,216 ГэВ/с.

в/ Разность между импульсом нейтрино в системе покоя каона и поперечным импульсом системы двух заряженных частиц должна быть положительной: $P_{\nu}^{*} - P_{\perp}^{c} = 0$.

После геометрической реконструкции событий на ленты суммарных результатов было записано --1,5x10⁵ кандидатов

в Км3-распады в эксперименте с жидководородным регенератором и -1,3x10⁵ в эксперименте с жидкодейтериевым регенератором. Оба набора данных обрабатывались независимо. Далее будем называть их "эксперимент I " и "эксперимент II".

В результате отбора по всем указанным критериям было оставлено для дальнейшего анализа - 82 000 экспериментальных и ~110 000 моделированных событий в эксперименте I и ~68 000 экспериментальных и ~220 000 моделированных событий в эксперименте II.

4° () - -

2.2. Вычитание фона

После идентификации всех мод распада К°-мезонов было найдено, что приблизительно 5% всех вилок не относятся ни к одной моде распада /так называемые "неидентифицированные события"/. Источником их могут быть оставшиеся неисключенными Кп3-распады, взаимодействия нейтронов с гелием в распадном объеме и случайное наложение двух треков. Можно считать, что по крайней мере одна из заряженных частиц в этих событиях является пионом. Если он распадается на лету на мюон и нейтрино, такое событие будет имитировать Км3-распад.

Фон от ложных Км3-распадов исключался следующим образом. Неидентифицированные события были переписаны на отдельную магнитную ленту и обработаны по тем же программам, что и экспериментальные Км3-распады, при этом одной заряженной частице приписывалась масса мюона, а другой – пиона. Они проходили все критерии отбора, приведенные выше, и для оставшихся событий строилось распределение в области Далитца. Затем это распределение вычиталось из аналогичного распределения для всех Км3-распадов с соответствующим коэффициентом нормировки.

Коэффициент нормировки определялся как вероятность распада пиона на лету в данной геометрии установки. Он был найден экспериментально по числу двухмюонных событий, когда обе заряженные частицы, зарегистрированные установкой, идентифицировались как мюоны. Для этих событий было построено распределение по инвариантной массе в предположении, что одна частица является мюоном, а другая - пионом. Форма распределения хорошо совпадала с соответствующим распределением для Км3-распадов. Это означает, что второй мюон в двухмюонных событиях возникал от распада пионов. Полученная таким образом вероятность распада пионов /1,5%/ согласуется с непосредственным расчетом доли распавшихся на лету пионов в Км3-распадах.

В итоге процент фоновых событий составил 2,0% в эксперименте I и 2,1% в эксперименте II. если одна из заряженных частиц в вилке является пионом. Если считать, что пионами являются обе частицы в вилке, эти цифры надо удвоить. Поскольку точный состав фона неизвестен, были взяты средние значения: 3,0% и 3,2% для экспериментов I и II соответственно.

2.3. Анализ формфакторов

При изучении Км3-распадов обычно предполагают справедливость V-A теории и рассматривают матричный элемент /2/. Затем, используя информацию о формфакторах f_+ и f_* рассматривают общий вид матричного элемента и определяют вклад скалярного и тензорного формфакторов f_8 и f_T .

Зависимость формфакторов f_+ и f от величины t анализировалась двумя методами.

1/ В модельно-независимом методе анализа значения f_+ и f определялись для 11 интервалов t в области его изменения от 0,01 до 0,10 /Гэв/с/². Поскольку в Км3-распадах одна из распадных частиц не регистрируется, возникает два решения при определении импульса каона и соответственно - два значения квадрата переданного импульса: t_1 и t_2 . В данном методе анализа отбирались те события, в которых оба значения совпадали в пределах 10 Мэв /так называемые "диагональные события"/. Полученные значения формфакторов f_+ и f приведены на рис. 1. Здесь же показан результат линейной аппроксимации данных. Величина параметров наклона λ_+ и λ_0 приведена в таблице.

2/ В модельно-зависимом анализе задавалось линейное разложение формфакторов по t. При этом использовались оба значения квадрата переданного импульса t_1 и t_2 . Для экспериментальных событий строилось трехмерное распределение в области Далитца $t_1 \times t_2 \times E_{\nu}$ с размером бина 10х10х20 МэВ. Бины, находящиеся на границе области, объединялись так, чтобы число событий в них было не меньше 20. Это распределение аппроксимировалось соответствующим распределением, получен-

Рис. 1. /а/ Зависимость формфактора ℓ₊ от квадрата переданного 4-импульса. /б/ - то же для формфактора ℓ. Результат линейной аппроксимации данных показан сплошной линией. Пунктирная кривая - результат расчета по модели релятивистских волновых функций. ■ - точка Каллана-Треймана, □ линейная экстраполяция наших данных в точку КТ.

Таблица

Значения параметров λ_{+} и λ_{0} , полученные при различных методах обработки

Метод обработны	Номер экспери- жента	Число событий	λ,	λ.	X2/cr.cb
Цодельно-независимый анализ	I + II	49 000	0,045 + 0,007	0,032 ± 0,006	0,4
Линейная модель Диагональные события	I + II	49 000	0,036 ± 0,007	0,034 ± 0,008	1,25
То же , все события	Î	82 000	0,0429 ± 0,0061	0,0337 ± 0,0094	1,28
	II	68 000	0,0424 ± 0,0055	0,0345 ± 0,0082	50,1
	I + II	150 000	0,0427 ± 0,0044	0,034I ± 0,0067	I,15

Примечание. Корреляция между параметрами λ

и
$$\lambda_+$$
 составляет: $\frac{d\lambda_0}{d\lambda_+} = -1.5$

8

9

ным методом Монте-Карло с учетом выражений /4/, /5/ и /13/. Коэффициенты наклона λ_+ и λ_0 играли роль свободных параметров.

Для проверки устойчивости результатов к различным выборкам подобный анализ проводился также для "диагональных" событий. В этом случае сравнивались двумерные распределения $t \times E_{\nu}$. Полученные значения λ_{+} и λ_{0} приведены в таблице. Указанные в ней ошибки включают, кроме статистических, также систематические погрешности, возникающие при варьировании критериев отбора событий и процента фона.

Результаты, полученные при обоих методах анализа и при различных выборках, согласуются между собой. Они также согласуются с нашими результатами, полученными на предварительных стадиях обработки ^{/3,4/.} Благодаря тщательному учету систематических эффектов была устранена неоднозначность решений для параметров λ_+ и λ_0 , наблюдавшаяся в предварительных результатах. Исследование поведения функции χ^2 показало, что имеется один минимум, соответствующий приведенным в таблице величинам параметров.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

3.1. Общий вид матричного элемента

Исходя из выражения /1/ для общего вида матричного элемента был оценен вклад тензорного и скалярного формфакторов по отношению к векторному формфактору f_+ . При этом использовалась линейная модель f_+ и значение λ_+ , полученное в данной работе. Найдена величина отношения : $|f_S/f_+|=0,03\pm0,02$ или <0,05 при 68% у.д.; $|f_T/f_+|=0,12\pm0,12$ или <0,24 при 68% у.д.

3.2. Зависимость формфактора f от t

На <u>рис. 16</u> показано значение формфактора f, задаваемое соотношением KT, и соответствующее значение, полученное при линейной аппроксимации наших данных. В пределах ошибок эти значения согласуются. Пунктирной линией показан результат расчета по модели, использующей формализм релятивистских волновых функций /10/. Видно, что эта модель не противоречит экспериментальным данным и совпадает с предсказанием модели KT.

На <u>рис.</u> 2 нанесены значения параметров λ_+ и λ_0 , полученные при анализе линейной модели. Приведены результаты данного эксперимента и некоторых экспериментов последнего вре-

Рис. 2. Значения параметров λ_{+}^{μ} и λ_{0} линейного разложения формфакторов f_{+} и f. О - результат данной работы и работ '11'(•); '12'(•); '13 (•). × - значение параметра λ_{+}^{0} , полученное в Ke3-распадах, зарегистрированных в этом же эксперименте. Вертикальная заштрихованная область показывает средне-мировое значение λ_{+}^{0} и его ошибку. Горизонтальными линиями показано значение λ_{+}^{0} , вычисленное в различных моделях: 1 - соотношение КТ /заштрихованная область указывает его ошибку/; 2 - модель, использующая дополнительное условие линейности формфакторов, 3 - модель, основанная на технике жестких мезонов.

мени, выполненных на достаточно большой статистике $^{/11-13}$ боризонтальные линии показывают значения параметра λ_0 , вычисленные в различных теоретических моделях: 1 - соотношение КТ; 2 - модель, использующая алгебру токов и дополнительное условие линейности формфакторов $^{/14}$, 3 - модель, основанная на технике жестких мезонов 15 . Как видно из рисунка, наши данные согласуются с предсказанием моделей 2 и 3 и несколько хуже - с моделью 1.

3.3. Величина *ξ*(t)

Из выражений /7/ и /8/ были получены следующие значения параметров $\xi(0)$ и Λ :

 $\mathcal{E}(0) = -0.10 \pm 0.09$; $\Lambda = 0.003 \pm 0.003$;

10

11

Рис. 3. Значение параметра ξ(0), полученное в экспериментах, выполненных различными методами: ■ - по измерению отношения l'(Kµ3)/l'(Ke3); ● - по измерению поляризации мюонов; O - по измерению плотности распределения в области Далитца. Вертикальными стрелками указаны предсказания различных моделей. Пояснения см. в тексте.

На рис. 3 приведены значения $\xi(0)$, полученные в экспериментах, выполненных различными методами: методом измерения отношений ширин распада $\Gamma(K\,\mu3)$ $\Gamma(K\,e\,3)^{-16+18}$, методом измерения поляризации мюонов в Kм3-распадах ^(19,20), и методом анализа области Далитца ⁽¹¹⁻¹³⁾. Заштрихованная область показывает средне-мировое значение $\xi(0)$ и его ошибку на 1978 г. ⁽²⁴⁾. Стрелки наверху указывают значение $\xi(0)$, вычисленное в различных теоретических моделях: 1 - модель, использующая однопетлевое приближение для низкоэнергетических разложений амплитуд ⁽²¹⁾; 2 - модель, предполагающая линейность формфакторов ⁽¹⁴⁾; 3 - модель, использующая алгебру токов, приближение мягких пионов и дисперсионные соотношения /ДС/ с одним вычитанием ⁽²²⁾/дано среднее значение предсказанной величины $\xi(0) = -0, 17+0, 17/;$ 4 - вычисления на основе техники жестких мезонов ^{(15/}; 6 - модель, учитывающая тяжелые кварки ^{(28/}).

Данные нашего эксперимента хорошо согласуются со среднемировым значением $\xi(0)$ и с моделями 3 и 4.

3.4. Проверка полюсных моделей

В полюсных выражениях /9/ и /10/ наиболее подходящими кандидатами для промежуточных одночастичных состояний являются хорошо известный К*(890,1) мезон и к(1100-1400,0⁺)-резонанс, на существование которого имеются некоторые указания /24/. Пользуясь выражениями /11/, мы получили значения масс М_{*}= 680+40 МэВ и М_к= 760+70 МэВ, что плохо согласуется с массами указанных резонансов. Это означает, что формфакторы должны описываться более сложными выражениями, чем простая полюсная модель: либо ДС с одним вычитанием, как предполагается в модели /^{22/}, либо суммой полюсного и дипольного членов, как предложено в модели /10/.

3.5. Правило $\Delta I = 1/2$

Правило $\Delta I = 1/2$ требует равенства формфакторов в распадах нейтральных и заряженных каонов, в частности, равенства параметров λ_+ и λ_0 . Однако имеющиеся данные по Км3-распадам плохо согласуются между собой /для λ_0 нет согласия даже в знаке/, поэтому проверка этого правила в настоящее время затруднительна.

3.6. Зависимость формфактора f₊ от t и вопрос о µ-е-универсальности

На <u>рис. 1</u> и <u>2</u> приведены результаты модельно-независимого анализа формфактора f_+ и его линейного разложения. На <u>рис. 2</u> крестиком обозначена величина параметра λ_+^0 , полученная из анализа Ke3-распадов, зарегистрированных в этом же эксперименте ^{/26/}: $\lambda_+^0 = 0,0306+0,0034$. Вертикальная заштрихованная область показывает средне-мировое значение этого параметра и его ошибку. Видно, что приведенная выше величина λ_+^0 хорошо совпадает со средне-мировым значением и расходится приблизительно на две стандартные ошибки с величиной λ_+^μ , полученной в данной работе. Количественно эта разность составляет:

 $\chi^{\mu}_{+} - \lambda^{e}_{+} = 0,0121 + 0,0056.$

Это может служить указанием на возможное нарушение $\mu - e - универсальности в полулептонных распадах каонов.$

В связи с проблемой $\mu - \theta$ -универсальности нужно отметить следующее. Открытие τ -лептона и имеющиеся указания на существование других тяжелых лептонов /23,34/ привели к пересмотру понятия универсальности относительно перестановки

13

электрона и мюона; по современным воззрениям это не является общим требованием теории. Во многих работах предлагаются конкретные механизмы, которые могут нарушать $\mu - \theta$ - универсальность: наличие нового типа взаимодействий, несиметричных относительно электронов и мюонов /27/;смешивание с тяжелыми лептонами /28/; схемы симметрии с правыми тока-ми /29/; нарушение мюонного квантового числа, связанное с нарушением СР /80/ и так далее.

В тех экспериментальных работах, в которых непосредственно измеряются параметры, связанные с электронами и мюонами, также наблюдается расхождение между этими параметрами на 2-3 стандартных ошибки /мю-мезоатомные измерения ^{/31/}, упругое рассеяние электронов и мюонов на протонах ^{/32/}, отношение ширин распада $\Gamma(\pi \to e_{\nu})/\Gamma(\pi \to \mu_{\nu})$ и проверка соотношения Гольдбергера-Треймана ^{/38/}/. Таким образом, как в экспериментах, так и в теории накапливаются данные, свидетельствующие о неуниверсальности свойств мюона и электрона. Необходимы дальнейшие измерения в этом направлении, как в экспериментах с новыми частицами, так и в "традиционных" экспериментах, в том числе и в распадах каонов.

3.7. Сравнение с данными других экспериментов и с нашими предварительными данными

На <u>рис. 2</u> вместе с результатами данной работы нанесены результаты трех других экспериментов по изучению Км3-распадов. Отметим некоторые особенности этих экспериментов, отличающие их от нашей работы.

В работе ^{/13/} /светлый квадрат/ измерение Км3-распадов проводилось в стримерной камере с внешним мюонным детектором, который идентифицировал 10% событий. Разделение по модам распада каонов проводилось, в основном, по кинематическим критериям.

Работа ^{/11/} /темный кружок/ выполнена на бесфильмовом искровом спектрометре, при этом регистрировалась только одна мода распада Км3. Примесь других мод распада определялась путем моделирования событий. При восстановлении импульса каона использовалось одно, меньшее решение.

В работе^{/12/} бесфильмовым искровым спектрометром регистрировались все моды распада каонов. Идентификация электронов проводилась с помощью однослойных свинцово-сцинтилляционных ливневых счетчиков, использовавшихся как пороговые детекторы. Проводился анализ только тех событий, у которых оба решения для импульса каона совпадали в пределах 20 МэВ /темный квадрат/. Сравнение наших предварительных данных с окончательными результатами показывает, что величина параметра λ_{+}^{μ} практически не изменилась, тогда как величина λ_{0} изменилась в пределах одной ошибки ^{/3/.} Если рассмотреть ход функции χ^{2} в зависимости от значения параметров λ_{+}^{μ} и λ_{0} , видно, что μ для λ_{0} имеется довольно широкий минимум, тогда как для λ_{+} он значительно уже, чем и объясняется устойчивость этого параметра.

Наблюдающееся на <u>рис. 2</u> расхождение между результатами отдельных экспериментов, превышающее их ошибки, можно объяснить перечисленными выше различиями в методах регистрации и обработки данных. Следует отметить, что приведенные на рисунке данные относятся только к анализу линейной модели формфакторов. Анализ данных в предположении слабой нелинейности формфакторов /см. п.3.2/, возможно, мог бы привести к лучшему согласованию экспериментов.

4. ЗАКЛЮЧЕНИЕ

Существующий в настоящее время разброс в результатах экспериментов по Км3-распадам не позволяет сделать однозначного заключения по всем работам. По результатам анализа матричного элемента Км3-распадов, приведенным в данной статье, можно сделать следующие выводы.

1. Матричный элемент распада согласуется с чисто векторным вариантом слабого взаимодействия.

2. Низкоэнергетические теоремы и SU(2)×SU(2) алгебра токов являются хорошей схемой для описания Км3-распадов. Перспективной является модель, использующая формализм релятивистских волновых функций и единообразно описывающая электромагнитный и слабый формфакторы каонов.

3. Данные эксперимента согласуются с кварковой моделью нарушения SU(3) - симметрии.

4. Входящие в матричный элемент распада формфакторы могут быть описаны дисперсионными соотношениями с одним или более вычитаниями.

5. Сравнение формфакторов в Ке3- и Км3-распадах, измеренных в данном эксперименте, указывает на возможное нарушение "-• -универсальности в этих процессах. ЛИТЕРАТУРА

1.	Chounet L.M., Gaillard J.M., Gaillard M.K. Phys.Rep., 1972, 4C, p.199.
2.	Callan C.G., Treiman S.B. Phys.Rev.Lett., 1966, 16, p.153.
3.	Альбрехт К.Ф. и др. ЯФ, 1974, 19, с.1247.
4.	Генчев В.И. и др. ОИЯИ, Р1-9032, Дубна, 1975.
5.	Басиладзе С.Г. и др. ОИЯИ, Р1-5361, Дубна, 1970.
6.	Бирулев В.К. и др. ОИЯИ, Р1-9434, Дубна, 1976.
2	Альорехт к. ч. и др. Оили, 1-/305, дуона, 19/3.
9	Вестергомби Г и пр. 90 1974 20 с 371
10.	Barut A.O., Wilson R. Phys Rev Lett 1971 26 p 260
11.	Donaldson G. et al. Phys. Rev., 1974, D9, p.2999.
12.	Buchanan C.D. et al. Phys.Rev., 1975, D11, p.457.
13.	Hill D.G. et al. BNL-26004, Upton, 1979.
14.	Kimel I. Lett.Nuovo Cim., 1976, 15, p.619.
15.	Boal D.H., Graham R.H. Phys.Rev., 1977, D15, p.1878.
10.	Basile P. et al. Phys. Rev., 1970, D2, p. 78.
18	Evans G. P. et al. Phys. Rev., 1973, D0, p. 1970.
19.	Sandweiss J. et al. Phys. Rev. Lett. 1973. 30. p. 1002.
20.	Clark A.R. et al. Phys.Rev., 1977, D15, p.553.
21.	Волков М.К., Казаков Д.И., Первушин В.И. ОИЯИ,
	Р2-9884, Дубна, 1976.
22.	Fuchs N.H. Phys.Lett., 1968, 172, p.1532.
23.	Хлопов М.Ю. ЯФ, 1978, 28, с.1134.
24.	Bricman L. et al. Kev. of Particle Properties, Geneva,
25.	Baranov D. et al. Phys.Lett. 1977, 708, p.269
26.	Бирулев В.К. и др. ОИЯИ. 1-12046. Дубна. 1978;
	ЯФ, 1979, 29, с.1516.
27.	Veltman M. Phys.Lett., 1977, 70B, p.253;
- 0	Рекало М.П. и др. ЯФ, 1979, 29, с.1285.
28.	Липманов Э.М., Михайлов Н.В. ЯФ, 1979, 29, c.1091.
29,	Fritzsh H. et al. Phys.Lett., 19/6, 596, p.256;
30	Barshay S. Phys Lett 1977 668 p. 246
31.	Dixit M.S. et al. Phys.Rev.Lett., 1971, 27, p.878:
	Walter H.K. et al. Phys.Lett., 1972, 40B, p.197.
32.	Kostoulas 1. et al. Phys.Rev.Lett., 1974, 32, p.489.
33.	Ballin D., Dombey N. Phys.Lett., 1976, 64B, p.304,
34.	Barger V. et al. Phys.Rev.Lett., 1977, 38, p.1190.

Рукопись поступила в издательский отдел 2 октября 1979 года.