

B-419

Объединенный институт ядерных исследований

дубна

17/12-29

P1 - 12617

С.В.Джмухадзе, М.А.Дасаева, Е.Н.Кладницкая, В.М.Попова, Г.П.Тонеева

ОБРАЗОВАНИЕ \bar{A} - ГИПЕРОНОВ В $\pi^- p$, $\pi^- n$ И π^{-12} С-ВЗАИМОДЕЙСТВИЯХ

P1 - 12617

С.В.Джмухадзе¹, М.А.Дасаева¹, Е.Н.Кладницкая, В.М.Попова², Г.П.Тонеева²

ОБРАЗОВАНИЕ \bar{A} - ГИПЕРОНОВ В π^- р, π^- п И π^{-12} С-ВЗАИМОДЕЙСТВИЯХ

Направлено в ЯФ

¹ Тбилисский государственный университет. ² Московский государственный университет.

> Сбъедильный виститут плерыях встреневаний БИБЛИЮТЕКА

Джмухадзе С.В. и др.

.

P1 - 12617

Образование $\bar{\Lambda}$ -гиперонов в π р, π п и π -12 С -взаимодействиях

Получены сечения образования $\overline{\Lambda}$ -гиперонов в $\pi^- p$, $\pi^- n$ и $\pi^{-12}C$ -взаимодействиях. Сечение образования $\overline{\Lambda}$ гиперонов, их импульсные и угловые характеристики в $\pi^{-12}C$ -взаимодействиях сравниваются с соответствующими данными для $\pi^- p$ -взаимодействий. В работе приводятся также энергетические зависимости некоторых распределений $\overline{\Lambda}$ -гиперонов.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1979

Dzhmukhadze S.V. et al. $\overline{\Lambda}$ -Hyperon Production in $\pi^- p$, $\pi^- n$ and $\pi^{-12}C$ -Interactions

A -hyperon production cross sections in $\pi^- p$, $\pi^- n$ and $\pi^{-12}C$ interactions have been obtained. Cross sections, their momentum and angular characteristics in $\pi^{-12}C$ -interactions are compared with the corresponding data for $\pi^- p$ interactions. Energy dependence for some $\overline{\Lambda}$ hyperon distributions are also given.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1979

Изучалось рождение $\overline{\Lambda}$ -гиперонов в π^- р , π^- п и π^{-12} Свзаимодействиях на материале, полученном при облучении двухметровой пропановой пузырьковой камеры ЛВЭ ОИЯИ в пучке π^- -мезонов с импульсом 40 ГэВ/с. Сечение образования $\overline{\Lambda}$ гиперонов, их импульсные и угловые характеристики в π^{-12} Свзаимодействиях сравниваются с соответствующими данными для π^- Р -взаимодействий с тем, чтобы выяснить влияние ядра углерода на рождение $\overline{\Lambda}$ -гиперонов.

В работе приводятся также энергетические зависимости некоторых распределений $\overline{\Lambda}$ -гиперонов.

Экспериментальный материал При просмотре фотографий с 2метровой пропановой пузырьковой камеры отбирались все взаимодействия

в выбранной эффективной области^{/1/}, вызванные первичными π^- -мезонами и сопровождающиеся рождением V°-событий и γ -квантов. Критерии отбора π^- р , π^- п и π^- С -взаимодействий в пропане даны в работе^{/2/}. После измерения и идентификации V°-событий, отобранных при просмотре около 80 *тыс.* снимков, получено 78 $\overline{\Lambda}$ -гиперонов и 146 неоднозначно идентифицированных ($\overline{\Lambda} \sim K_S^\circ$) частиц. Распределение $\overline{\Lambda}$ и ($\overline{\Lambda} \sim K_S^\circ$)-частиц по типам взаимодействий приведено в *табл.* 1.

Кинематически неразделенные ($\bar{\Lambda} \sim \gamma$) события были отнесены к γ -квантам 3^{\prime} , $\bar{\Lambda}$ -гиперон считался однозначно идентифицированным, если:

1/ по критерию $\chi^{\hat{2}}$ ($\chi^{\hat{2}} \le 11$) проходила только одна гипотеза $\bar{\Lambda}$,

2/ по критерню $\chi^2 (\chi^2 \le 11)$ проходили две гипотезы / $\overline{\Lambda}$ и K_S° /, но $\overline{\Lambda}$ -гиперон можно было идентифицировать по ионизации антипротона от его распада.

	Таблица 1				
Тип события	п⊼	n X KS	n´ _Ā		
π_p	31	50	42		
π n	9	20	11		
π ⁻ C	35	70	69		
Без типа	3	6	5		
Bce	78	146	127		

Далее для всех $\overline{\Lambda}$ и ($\overline{\Lambda}$ - К $_{S}^{\circ}$)-частиц был построен спектр эффективных масс системы ($\overline{p}\pi^{+}$) и получено распределение по поперечным импульсам π^{+} -мезонов в системе покоя $\overline{\Lambda}$ -гиперона. Поперечные импульсы π^{+} -мезонов определялнсь относительно направления движения $\overline{\Lambda}$ -гиперонов в лаб. системе.

Рис. 1. Спектр эффективных масс (рп⁺).

На рис. 1 показан спектр эффективных масс ($\bar{p}\pi^+$) для однозначно идентифицированных $\bar{\Lambda}$ -гиперонов и $\bar{\Lambda}$ -гиперонов из группы ($\bar{\Lambda} \sim K_S^\circ$), у которых π^+ -мезон от распада имеет $P_{\perp} < 103 \ M_3 B/c$. В спектре масс $\bar{p}\pi^+$ виден отчетливый пик при массе $\bar{\Lambda}$ -гиперона /1116 $M_3 B/$, указывающий на хорошее экспериментальное разрешение. Распределение по $P_{\perp}^{\pi^+}$ / рис. 2/ согласуется с распределением вероятностей

$$N(P_{\downarrow})dP_{\downarrow} = \frac{P_{\downarrow}}{P^{*}} \frac{dP_{\downarrow}}{(P^{*2}-P^{2})^{1/2}} \quad 0 \le P_{\downarrow} \le P^{*},$$

где N(P₁) - число π^+ -мезонов с P₁ в интервале от P₁ до P₁ + dP₁ . P* - значение импульса π^+ в системе покоя $\overline{\Lambda}$ гиперона / P* = 0,1004 ГэВ/с/.

Число $\overline{\Lambda}$ -гиперонов, выделенных по эффективной массе ($\overline{p}\pi^+$) и $p_{\perp}^{\pi^+}$, для разных типов событий дано в *табл. 1*/см. n'/.

Рис. 2. Распределение по поперечным импульсам π^+ -мезонов от распада $\bar{\Lambda}$ - гиперонов в системе покоя $\bar{\Lambda}$.

В целом, в статистику $\bar{\Lambda}$ -гиперонов вошло /35±5/% частиц из группы ($\bar{\Lambda}$ - K_{S}°). Это значение находится в хорошем согласии с оценкой доли $\bar{\Lambda}$ среди ($\bar{\Lambda} \sim K_{S}^{\circ}$) частиц, полученной при статистическом разделении $\bar{\Lambda}$ и K_{S}° с помощью углового распределения π^{-} -мезонов от распада K_{S}° в системе покоя K_{S}° . Угол вылета π^{-} -мезона определялся по отношению к направлению полета K_{S}° в лаб. системе. Это угловое распределение π^{-} мезонов должно быть изотропным, и оно становится таковым, если к нему добавить /60±10/% К из группы ($\bar{\Lambda}$ - K_{S}°) и /15±3/% из группы (Λ - K_{S}°).

Следует сказать о нашей классификации типов взаимодействий первичных π^- -мезонов в пропане (C_3H_8). Символом " π^-p " обозначаются взаимодействия π^- -мезонов как со свободными протонами, так и с квазисвободными протонами ядра углерода. Вклад последних в общее число π^-p -взаимодействий составляет /44±1/%^{/4/}. Символ π^-C - относится к взаимодействиям π^- -мезонов с ядром углерода без учета взаимодействий с квазисвободными нуклонами ядра. Все взаимодействия π^- -мезонов с ядром углерода обозначаются как π^- 12C.

Сечения образования Л-гиперонов в п⁻⁻р, п⁻⁻ п и п⁻¹²С-взаимодействиях

 $N_{\overline{\Lambda}} = n_{\overline{\Lambda}} \cdot \langle W_1 \rangle^{\overline{\Lambda}} \cdot W_2^{\overline{\Lambda}} .$

Определение полного чнсла Ā - гиперонов, образовавшихся в со-

ответствующем типе взанмодействий, проводилось по числу $\overline{\Lambda}$ гиперонов, зарегистрированных в эффективном объеме камеры, с учетом ряда поправок. Так, для каждого $\overline{\Lambda}$ -гиперона определялся "вес" W_1 , равный обратной величине вероятности регистрации $\overline{\Lambda}$ -гиперона в выбранном эффективном объеме. Средние значения "весов" для π^- р , π^- п и π^- С -взаимодействий даны в *табл.* 2. Кроме того, для каждого типа событий был определен коэффициент W_2 , учитывающий поправки на нейтральную моду распада $\overline{\Lambda}$ -гиперона, на потери $\overline{\Lambda}$ вблизи звезды /до 2 см/ и в направлении ко дну камеры ^{/3/} на эффективность просмотра, неизмеримые V°- события и $\overline{\Lambda}$ из событий без типа. Значения W_2 также приводятся в *табл.* 2. В результате полное число $\overline{\Lambda}$ -гиперонов (N $_{\overline{\Lambda}}$) определялось как

Для π^{-12} С -взаимодействий N $\frac{\pi^{-12}}{\Lambda}$ находилось как сумма $N_{\overline{\Lambda}}^{\pi^{-12}C} = N_{\overline{\Lambda}}^{\pi^{-}C} + N_{\overline{\Lambda}}^{\pi^{-}n} + (1-\alpha)N_{\overline{\Lambda}}^{\pi^{-}p} ,$

где a - доля взаимодействий π^- -мезонов со свободными протонами в пропане $a = 0,56\pm0,01$.

Для определения инклюзивных сечений образования A -гиперонов использовались следующие соотношения:

$$\sigma_{\overline{\Lambda}}^{\pi^{-}p} = \frac{3\sigma_{in}^{\pi^{-}12}C + 8\sigma_{in}^{\pi^{-}p}}{N_{in}^{C_{3}H_{8}}} \cdot \frac{\alpha N_{\overline{\Lambda}}^{\pi^{-}p}}{8}, \qquad /1/$$

$$\sigma_{\overline{\Lambda}}^{\pi^{-12}C(\pi^{-}C)} = \frac{3\sigma_{in}^{\pi^{-12}C} + 8\sigma_{in}^{\pi^{-}p}}{N_{in}^{C_{3}H_{8}}} \cdot \frac{N_{\overline{\Lambda}}^{\pi^{-12}C(\pi^{-}C)}}{3}, /2/$$

Где $\sigma_{in}^{\pi^- p} = /21,38\pm0,16/$ мб⁷⁵⁷, $\sigma_{in}^{\pi^- 12}$ = /179±2/ мб⁷⁶⁷ N_{in}^{C3 H8} - полное число неупругих взаимодействий в пропане. Пользуясь формулой, аналогичной /2/, можно получить инклюзивное сечение образования $\overline{\Lambda}$ -гиперонов на всех квазисвободных нейтронах ядра углерода. Поэтому для получения $\sigma_{\overline{\Lambda}}^{\pi^- n}$ использовался другой метод: определение инклюзивного сечения через <n $\lambda^{\pi^- n}$ и $\sigma_{in}^{\pi^- n}$ по формуле

где <n $\overline{\Lambda}^{\pi^-n}$ = $\frac{N^{\pi^-n}}{\overline{\Lambda}}$ - среднее число $\overline{\Lambda}$ -гиперонов на одно неупругое π^-n - взаимодействие, а $\sigma_{in}^{\pi^-n}$ = 19,8±0,3 мб^{/5/}.

Таблица 2

Тип взаимо- действия	n´⊼	<w15<sup>Å .</w15<sup>	₩ 2	NX	<i>о</i> _⊼ (мб)	$<$ n $\overline{\Lambda}>$
π_p	42	1,27±0,20	1,85±0,04	99 ±22	0,14 ±0,03	0,007±0,002
π ⁻ n	11	1,27 ±0,38	1,75±0,03	25±10	0,08 ± 0,03	0,004±0,002
π ⁻ C	69	1,22±0,15	1,78 ± 0,03	150 ±26	1,03 ± 0,18	0,011 ±0,002
$\pi^{-12}C$				219±30	1,49 ±0,21	0,008 ±0,001

Полученные значения инклюзивных сечений рождения $\overline{\Lambda}$ -гиперонов приведены в *табл.* 2. Там же даны средние числа $\overline{\Lambda}$ - гиперонов – $n_{\overline{\Lambda}}$. приходящиеся на одно неупругое взаимо-

действие. В пределах ошибок $n_{\Lambda} = n_{\Lambda} = n_{\Lambda}$, т.е. взаимодействие π -мезона с ядром углерода не приводит к сущест-

венному увеличению среднего числа $\overline{\Lambda}$ -гиперонов на одно π^{-12} столкновение по сравнению с π^{-12} протонными взаимодействиями. И сечение образования $\overline{\Lambda}$ -гиперонов и среднее число $\overline{\Lambda}$ для π^- р -взаимодействий определялись в предположении равной вероятности рождения этих частиц как на свободных протонах, так и на квазисвободных протонах ядра углерода в пропане. Энергетическая зависимость сечений образования $\overline{\Lambda}$ -гиперонов в π^- р -столкновениях в интервале импульсов налетающего π^- -мезона от 15 до 250 $\Gamma \cdot B/c^{-7-11/}$ показана на *рис.* 3. Виден сильный рост $\sigma_{\overline{\Lambda}}$ в рассматриваемом интервале энергий /примерно в 10 раз/.

Интересно посмотреть, в паре с какой странной частицей рождаются $\overline{\Lambda}$ -гипероны. Число зарегистрированных пар $\overline{\Lambda}\Lambda$ и $\overline{\Lambda} K_{S}^{\circ}$, к сожалению, мало, но и оно позволяет сделать вывод, что рождение $\overline{\Lambda}$ -гиперонов происходит преимущественно в паре с K° -мезонами, а не с Λ -гиперонами:

$$\pi(\pi^{-}p \to \Lambda + \Lambda + ...) = /0.021 \pm 0.012 / MG,$$

 $\sigma(\pi^- p \to \bar{\Lambda} + K_{s}^{o} + ...) = /0,034\pm0,015/$ MG,

$$\sigma(\pi^{-12}C \to \Lambda + \Lambda + ...) = /0,34\pm0,11/MG,$$

$$\sigma(\pi^{-12}C \rightarrow \Lambda + K^{\circ} + ...) = /0,50\pm0,14/$$
 MG.

8

Такая же картина наблюдается в $\pi^- p$ -взанмодействиях при 250 ГэВ/с^{/11}/При 15 ГэВ/с^{/7/} наблюдалось примерно равновероятное образование $\overline{\Lambda}\Lambda$ и $\overline{\Lambda}\overline{K}$ пар. Средняя множественность заряженных частиц, сопровождающих рождение $\overline{\Lambda}$ -гиперонов, не отличается от <n_±> в неупругих $\pi^- p$ и $\pi^- n$ взаимодействиях^{/5/} и несколько выше в π^{-12} С-взанмодействиях^{/12/}/см. шабл. 3/.

	~					
1	<u>n</u>	A	11	21	1	- 3
u	•••	/ 8	-	64	•	

	<i>π</i> ¯р	π ^{- 12} C
$<\mathbf{n}_{\pm}>^{\mathbf{\Lambda}}$	5,74+0,40	7,62+0,35
<p a="">/Fab/c/</p>	4,00+0,29	3,66+0,15
< PLA > /MaB/c/	444+36	431 <u>+</u> 21
<x>X</x>	-/0,17+0,03/	-/0,17+0,02/
<y*></y*>	-/0,50+0,08/	-/0,53+0,05/
$<\cos\theta^*>$	-/0,568+0,075/	-/0,609+0,045/

Инклюзивные	распределения
∧ - гиперонов	

Импульсные распределения $\overline{\Lambda}$ -гиперонов в лаб. системе для π^- р и

 π^{-12} С взаимодействий, нормированные на сечения неупругих процессов, приведены на *рис.* 4. В пределах ошибок оба распределения совпадают, т.е. ядро углерода существенно не изменяет спектра $\bar{\Lambda}$ -гиперонов. Близки между собой и средние значения импульсов в этих взаимодействиях /см. табл. 3/. Следует отметить отсутствие $\bar{\Lambda}$ с $P_{no5} > 8,5 \Gamma \beta B/c$.

Рис. 4. Нормированные импульсные распределения $\overline{\Lambda}$ -гиперонов в лаб. системе координат для $\pi^- p$ и $\pi^{-12}C$ -взаимодействий при 40 ГэВ/с.

 $y^* = \frac{1}{2} \ln \frac{E^* + P^*}{E^* - P^*}_{||}$ представлены на *рис.* 5^{*}. Видно, что $\overline{\Lambda}$ -гипероны образуются в основном при малых $y^*(|y^*| \le 1)$, что указывает на малую роль фрагментации сталкивающихся частиц в рождении $\overline{\Lambda}$ -гиперонов. Оба распределения асимметричны относительно y^{*}, превалирует рождение $\overline{\Lambda}$ -гиперонов в полу-

Распределения Л-гиперонов

сфере мишени.

* Для п⁻¹²С взанмодействий у* определялся как для взанмодействий п⁻-мезонов со свободными нуклонами.

по продольной быстроте

Рис. 5. Нормированные распределения $\overline{\Lambda}$ - гиперонов по продольной быстроте для $\pi^- p$ и $\pi^{-12}C$ - взаимодействий.

Асимметрия распределения $\overline{\Lambda}$ -гиперонов по у* наблюдается и при 250 ГэВ/с^{/11/}/рис. 6/. Из распределений, приведенных на рис. 6, можно заключить, что рост сечения рождения $\overline{\Lambda}$ -гиперонов с энергией происходит в основном в центральной области. Вплоть до 250 ГэВ/с продолжается рост $\frac{d\sigma}{dy^*}$ при у*=0, в отличие от Λ -гиперонов /рис. 7/. Нормированные инвариантные сечения

$$\frac{1}{\sigma_{\rm in}} \mathbf{F}_{1}^{\Lambda}(\mathbf{x}) - \frac{1}{\sigma_{\rm in}} \int \frac{2\mathbf{E}^{*}}{\pi\sqrt{\mathbf{s}}} \frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{x} \cdot \mathrm{d}\mathbf{P}_{\perp}^{2}} \mathrm{d}\mathbf{P}_{\perp}^{2},$$

где x = $\frac{2P_{\parallel}^{*}}{\sqrt{s}}$; E*, P_{\parallel}^{*} - энергия и продольный импульс $\overline{\Lambda}$ -ги-

перона в с.ц.м. (π^-p) , P_{\perp} - поперечный импульс $\overline{\Lambda}$, \sqrt{s} - полная энергия в с.ц.м. (π^-p) , для π^-p и π^{-12} Свзаимодействий в пределах ошибок совпадают / *рис.* 8/. Такой же вывод можно сделать из сравнения нормированных инвариантных сечений:

$$\frac{1}{\sigma_{\rm in}} F_2^{\Lambda}(\underline{P}_{\perp}^2) = \frac{1}{\sigma_{\rm in}} \int \frac{2E^*}{\pi\sqrt{s}} \frac{d\sigma}{dx \cdot d\underline{P}_{\perp}^2} dx \cdot /puc. 9/.$$

Рис. 6. Распределения $\overline{\Lambda}$ - гиперонов по продольной быстроте для π р - взаимодействий при импульсах 15, 40 и 250 ГэВ/с.

Рис. 7. Энергетическая зависимость $\frac{d\sigma}{dy^*}|_{y^*=0}$ для $\overline{\Lambda}$ и Λ -гиперонов.

Рис. 8. Нормированные распределения $F_1(x)$ $\overline{\Lambda}$ гиперонов для π^- р и π^{-12} С - взаимодействий.

Рис. 9. Нормированные распределения $F_2(P_{\downarrow}^2)$ $\bar{\Lambda}$ - гиперонов. Обозначения те же, что на рис. 8.

Рис. 10. Энергетическая зависимость $F_1^{\overline{\Lambda}}(x)$ для $\pi^- p$ - взаимодействий.

Рис. 11. Энергетическая зависимость $F_2^{\overline{A}}(P_{\perp}^2)$ для $\pi^- p$ -взаимодействий.

При увеличении импульса первичных π -мезонов от 15 до 250 ГэВ/с наблюдается значительный рост $F_1^{\overline{\Lambda}}(x)$, во всей области рождения $\overline{\Lambda}$ -гиперонов по x. В интервале импульсов 40-250 ГэВ/с при существующей статистике $\overline{\Lambda}$ -гиперонов можно говорить лишь о росте $F_1^{\overline{\Lambda}}(x)$ вблизи x=0 /рис. 10/. Распределения инвариантных сечений $F_{\overline{\Lambda}}^{\overline{\Lambda}}(P_1^2)$ при 40 ГэВ/с и 250 ГэВ/с близки между собой до $P_1^2 < 0.5$ /рис. 11/.

Выводы 1. Определены инклюзивные сечения образования ⊼-гиперонов в π⁻р, π⁻п и π⁻¹²С взаимодействиях при 40 ГэВ/с. Они составляют ≤ 1% от соответствующих неупругих сечений.

2. В исследуемых типах взаимодействий $\overline{\Lambda}$ -гипероны образуются преимущественно в полусфере мишени и при малых значениях у* (|y*| \leq 1). Вклад в сечение рождения $\overline{\Lambda}$ -гиперонов процессов фрагментации сталкивающихся частиц мал.

3. Среднее число $\overline{\Lambda}$ -гиперонов на одно π^{-12} С -взаимодействие в пределах ошибок совпадает с $< n_{\overline{\Lambda}} >$ на одно $\pi^- p$ взаимодействие. Совпадают в пределах ошибок импульсные и угловые распределения $\overline{\Lambda}$ -гиперонов в этих взаимодействиях, а также распределения инвариантных сечений $F_1^{\overline{\Lambda}}(x)$ и $F_2^{\overline{\Lambda}}(P_{\perp}^2)$. Все это свидетельствует о малом влиянии ядра углерода на рождение $\overline{\Lambda}$ -частиц по сравнению с $\pi^- p$ -взаимодействиями.

4. Инвариантное сечение $F_1^{\Lambda}(x)$ в $\pi^- p$ -взаимодействиях не обнаруживает предельного поведения при $x \sim 0$ вплоть до 250 ГэВ/с.

В заключение авторы выражают благодарность участникам сотрудничества по обработке пленок с 2-метровой пропановой камеры за участие в получении экспериментального материала и обсуждение результатов, коллективу лаборантов - за просмотр и измерения событий, И.А.Первушиной и Н.В.Печенову - за помощь в оформлении рисунков.

Литература

- 1. Абдурахимов А.У. и др. ОИЯИ, 1-6967, Дубна, 1973.
- 2. Абдурахимов А.У. и др. ОИЯИ, РІ-6326, Дубна, 1972.
- 3. Абдурахимов А.У. и др. ОИЯИ, Р1-7267, Дубна, 1973; ЯФ, 1973, 18, с.1251; Nucl. Phys., 1974, В79, р.57.
- 4. Ангелов Н. и др. ОНЯИ, Р1-9209, Дубна, 1975; ЯФ, 1976, 24, с.732.
- 5. CERN-Serpukhov Collaboration. Phys.Lett., 1969, 30, р.500. Ангелов Н.С. и др. ОИЯИ, Р1-9785, Дубна, 1976; ЯФ, 1977, 25, с.591.
- 6. Аллаби Д.В. и др. ЯФ, 1970, 12, с.538.
- 7. Barreiro F. et al. Phys. Rev., 1978, D17, p.669.
- 8. Stunteeeck P.H. et al. Phys. Rev., 1974, D9, p.608.
- 9. Berger E.L. et al. CERN Report No. CERN /D.Ph.II/.Phys. 74-27, 1974.
- 10. Bogert D. et al. NAL-Conf., 74-55-EXP.
- 11. Bogert D., Ranft R., Harris R. Phys. Rev., 1977, D16, p.2098.
- 12. Ангелов Н.С. и др. ОИЯИ, Р1-9978, Дубна, 1976; ЯФ, 1977, 25, с.1009.

Рукопись поступила в издательский отдел 4 июля 1979 года.