2779 2-79 2-79 2-79 института ядерных исследований дубна

C346.48 5-497

P1 - 12311

А.А.Бельков, С.А.Бунятов, Б.Ж.Залиханов, В.С.Курбатов, А.Халбаев, В.А.Ярба

ИССЛЕДОВАНИЕ РЕАКЦИИ *я*<sup>•</sup> **р** → *я*<sup>°</sup> **n** ПРИ ЭНЕРГИИ 240 МэВ



P1 - 12311

А.А.Бельков, С.А.Бунятов, Б.Ж.Залиханов, В.С.Курбатов, А.Халбаев, В.А.Ярба<sup>1</sup>

ИССЛЕДОВАНИЕ РЕАКЦИИ **π<sup>-</sup> p** → **π<sup>°</sup> π<sup>°</sup> n** ПРИ ЭНЕРГИИ 240 МэВ

Othermania iniCTHTY? CONTRACT BECARDONALI ME MAGTEKA

<sup>1</sup>Институт физики высоких энергий, Серпухов. <sup>2</sup>Институт ядерной физики АН УзССР, Ташкент. Бельков А.А. и др.

Исследование реакции *π*<sup>-</sup>р → *π*<sup>o</sup>*π*<sup>o</sup>*п* при энергии 240 МэВ

Измерено полное сечение реакции  $\pi^{-} p \rightarrow \pi^{\circ} \pi^{\circ} n$  при энергии 240+10 МэВ. Величина сечения равна (0,13±0,02) мбн. Проведен изотопический анализ реакции  $\pi N \rightarrow \pi \pi N$  при этой энергии. Отношение изотопических амплитуд X=F<sub>10</sub>/F<sub>32</sub> равно 3,8±0,6.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1979

| Bel'kov A.A. et al.                                      | P1 - 12311          |
|----------------------------------------------------------|---------------------|
| Investigation of the $\pi^- p \rightarrow \pi^0 \pi^0 n$ | reaction at 240 MeV |

The total cross section of the  $\pi^-p \rightarrow \pi^0 \pi^0 n$  reaction is measured at 240<u>+</u>10 MeV. It is equal to  $(0.13\pm0.02)$  mbn. The isotopic analysis of the  $\pi N \rightarrow \pi \pi N$  reaction at this energy is performed. The ratio of isotopic amplitudes  $X = F_{10}/F_{32}$  equals  $3.8\pm0.6$ .

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubno 1979

© 1979 Объединенный институт ядерных исследований Дубна

Настоящая работа является продолжением исследований реакции  $\pi^{-}p \rightarrow \pi^{\circ}\pi^{\circ}n^{-1,2/}$  вблизи порога с целью проверки киральной теории сильных взаимодействий  $^{/3,4/}$ .

Реакция  $\pi^- p \to \pi^0 \pi^0 n$  изучалась при энергии падающего  $\pi$ -мезона  $T_{\pi} = 24O_{\pm}1O$  *МэВ* на установке, схематичный вид которой показан на *рис. 1.* Экспериментальная установка состояла из двух пар черенковских  $\gamma$ -спектрометров<sup>5/</sup> $C_1$ ,  $C_2$  н  $C_3$ ,  $C_4$ , лежащих на одной прямой по разные стороны жидководородной мишени. Измерения проводились в двух геометриях. В геометрии I обе пары спектрометров располагались под углом 90° к направлению пучка; в геометрии II пара  $C_1, C_2$ -под углом 120°, пара  $C_3, C_4$ - под углом 60° к пучку.

Реакция выделялась по  $\gamma\gamma$  - совпадениям в следующих комбинациях черенковских спектрометров:  $(\breve{C}_1 + \breve{C}_3)$ ,  $(\breve{C}_1 + \breve{C}_4)$ ,  $(\breve{C}_2 + \breve{C}_3)$  и  $(\breve{C}_2 + \breve{C}_4)$ . Углы между направлениями  $\gamma$  - квантов, регистрируемых комбинациями  $(\breve{C}_1 + \breve{C}_3)$  и  $(\breve{C}_2 + \breve{C}_4)$ , равны 180±14°, комбинациями  $(\breve{C}_1 + \breve{C}_4)$  и  $(\breve{C}_2 + \breve{C}_3)$  - 156±14°. Геометрия установки была выбрана таким образом, чтобы при установленных порогах регистрации  $\gamma$  - квантов  $E_{\gamma}$  = 30 *МзВ* реакция  $\pi^- p \to \pi^\circ n$  не регистрировалась, а вклад реакции  $\pi^- p \to \pi^\circ \gamma n$  не превышал 10%.

Для калибровки спектрометров у-квантами использовались две реакции:

$$\pi^{-} + \mathbf{p} \rightarrow \pi^{\mathbf{o}} + \mathbf{n}$$
 /1/

$$\pi^- + \mathbf{p} \to \gamma + \mathbf{n} \,. \tag{2}$$

Отрицательные пионы с энергией 80 *МэВ* тормозились в медном фильтре и останавливались в жидководородной мишени, а испускаемые  $\gamma$ -кванты регистрировались спектрометрами, расположенными по разные стороны мишени под углами 90° по



10 cm

Рис. 1. Схематический вид экспериментальной установки.

отношению к пучку. Энергия  $\gamma$ -квантов от процесса /1/ составляет в среднем /67,5±15/ МэВ.

В процессе /2/ образуются моноэнергетические  $\gamma$ -кванты с энергией 129 *МэВ*. На *рис.* 2 показано амплитудное распределение импульсов от  $\gamma$ -квантов для одного из спектрометров. Отношение площади под первым пиком к площади под вторым пиком должно равняться удвоенному отношению Пановского  $P = \sigma_{tot} (\pi^- p \rightarrow \pi^0 n) / \sigma_{tot} (\pi^- p \rightarrow \gamma n) = 1,53\pm0,02$ . Для калибровочного спектра отношение площадей под пиками равно 2,91±0,16. Полученная ранее<sup>757</sup> несколько большая величина этого отношения объясняется недостаточной экранировкой фоновых  $\gamma$ -квантов от медного фильтра.



Рис. 2. Амплитудные распределения импульсов, полученные от у-квантов с энергиями /67,5<u>+</u>15/ МэВ н 129 МэВ.

Доля пионов в пучке определялась по времени пролета<sup>6</sup> и при энергин /24O±1O/ *МэВ* составляла /82±2/%. Спектр по времени пролета частиц пучка показан на *рис. 3*.

События, соответствующие реакциям

$$\pi^- p \rightarrow \pi^0 \pi^0 n$$
 /3/

$$\pi^- p \rightarrow \pi^0 \gamma n$$
, /4/

выделялись по  $\gamma\gamma$  -совпадениям от двух черенковских спектрометров с монитором. На *рис.* 4 показано распределение времени появления сигнала на одном из спектрометров относительно монитора. Уровень случайных совпадений составлял около 15%. Эффект на водороде определялся путем вычитания отсчетов при измерениях с пустой мишенью. В среднем счет при пустой мишени составлял 45% от общего счета.

Так как в эксперименте регистрируются у -кванты от двух реакций /3/ и /4/, то для выделения реакции /3/ необходимо учесть вклад от реакции /4/. Для этого по модели<sup>/7/</sup> были рассчитаны сечение реакции /4/ при пороге регистрации у -квантов 30 МэВ и спектры у -квантов от этой реакции.



На рис. 5 и 6 показаны спектры *у*-квантов от реакции /3/, полученные путем вычитания вкладов реакции /4/ из суммарных спектров, регистрируемых установкой. Сравнение полученных спектров с результатами моделирования реакции /3/ с постоянным матричным элементом показывает, что экспериментальные спектры существенно мягче расчетных. Кроме того, в обеих геометриях число *уу* -совпадений в комбинациях



Puc. 5. Спектр у-квантов от реакции  $\pi^- p \rightarrow \pi^0 \pi^0 n$ . Геометрия I. Сплошная гистограмма с нанесенными на нее ошибками - эксперимент; пунктир - расчеты с постоянным матричным элементом  $M_1$ ; тонкая сплошная линия - расчеты с матричным элементом  $M_2$  при  $A = 0.3 \text{ m}_{\pi}^{-2}$  и  $B = 3 \text{ m}_{\pi}^{-4}$ .  $a/\theta_{\gamma} = 90^{\circ}$ , уу-совпадения в комбинациях  $(C_1 + C_3) u (C_2 + C_4) \cdot M_1$ :  $\chi^2/\bar{\chi}^2 = 3,5$ , С.L. <1%;  $M_2$ :  $\chi^2/\bar{\chi}^2 = 1,6$ , С.L. ~10%,  $6/\theta_{\gamma} = 90^{\circ}$ , уу-совпадения в комбинациях  $(C_1 + C_4) u (C_2 + C_3) \cdot M_1$ :  $\chi^2/\bar{\chi}^2 = 2,$  С.L. ~3%,  $M_2$ :  $\chi^2/\bar{\chi}^2 = 1,1$ , С.L. ~ 35%.

6



Puc. 6. Спектр  $\gamma$ -квантов от реакции  $\pi^- p \rightarrow \pi^0 \pi^0 h$ . Геометрия II. Сплошная гистограмма с нанесенными на нее ошибками - эксперимент; пунктир - расчеты с постоянным матричным элементом  $M_1$ ; тонкая сплошная линия - расчеты с матричным элементом  $M_2$  при  $A=0,3 m_\pi^{-2}$  и  $B=3 m_\pi^{-4}$ .  $a/\theta_\gamma = 60^\circ$ , спектрометры  $C_1$  и  $C_2$  при  $\gamma\gamma$ -совпадениях в комбинациях ( $C_1 + C_3$ ) и ( $C_2 + C_4$ ).  $M_1: \chi^2/\bar{\chi}^2 = 13$ , C.L. < 1%;  $M_2: \chi^2/\bar{\chi}^2 = 3.2$ , C.L. ~ 2%. 6/ $\theta_\gamma = 120^\circ$ , спектрометры  $C_3$  и  $C_2 + C_4$ ).  $M_1: \chi^2/\bar{\chi}^2 = 2.2$ , C.L. ~ 3%,  $M: \chi^2/\bar{\chi}^2 = 0,7$ , C.L. ~ 70%.

спектрометров, находящихся под углом 180,° на 30% больше, чем счет в комбинациях под углом 156°, в то время как рассчитанные при постоянном матричном элементе эффективности регистрации двух у -квантов практически совпадают для разных комбинаций. Для описания экспериментальных спектров у-квантов от реакции /3/ был использован матричный элемент, предложенный нами в работе<sup>/2/</sup>:

$$M^{2} = \{1 + A(\vec{p}_{\pi}^{*} - \cdot \vec{p}_{n}^{*})^{2}\} + B\{(\vec{p}_{\pi}^{*} - \vec{p}_{\pi}^{*} - \vec{p}_{n}^{*}) \cdot \vec{p}_{n}^{*}\}^{2}$$
 /5/

Такой матричный элемент соответствует введению угловых корреляций следующего вида:

$$\vec{p}_{\pi}^{*} \cdot \vec{p}_{n}^{*} = p_{\pi}^{*} - p_{n}^{*} \cos \theta_{n\pi}^{*} - \frac{1}{2} \left\{ (\vec{p}_{\pi}^{*} - \vec{p}_{\pi}^{*}) \cdot \vec{p}_{n}^{*} \right\}^{2} = F(E_{n}^{*}) (\cos \theta_{\pi^{\circ}n}^{*})^{2} .$$

Здесь звездочки означают, что углы и импульсы берутся в общей с.ц.и.;  $\theta_{\pi^{\circ}n}^{ll,M,\pi^{\circ}\pi^{\circ}}$  - угол вылета нейтрона в с.ц.и. двух  $\pi^{\circ}$ -мезонов относительно импульса одного из  $\pi^{\circ}$ -мезонов;  $F(E_n^{\circ})$  - кинематический фактор, зависящий только от энергии нейтрона в общей с.ц.и.

Нанлучшее описание экспериментальных спектров достигается при  $A = 0.3 m_{\pi}^{-2}$  и  $B = 3 m_{\pi}^{-4}$  Спектры *у*-квантов, рассчитанные с матричным элементом /5/, также показаны на *рис.5* и 6. Угловые распределения нейтрона, соответствующие введенным в матричный элемент угловым корреляциям, показаны на *рис.* 7. Анизотропия распределения по углам  $\theta^*_{n\pi}$  и  $\theta^{II}_{\pi}$ . М.  $\pi^{\circ}\pi^{\circ}$ существенно меньше анизотропии, которую приходится вводить для описания экспериментальных спектров *у*-квантов при энергии 270  $M \Rightarrow B^{-2/}$  /  $A = 0.5 m_{\pi}^{-2}$ ,  $B = 4m_{\pi}^{-4}$  /. Это и должно наблюдаться при приближении к порогу реакции /  $T_{IIOP} = 160 M \Rightarrow B/$ .

В табл. 1 сравниваются результаты вычисления полного сечения реакции /3/ при постоянном матричном элементе и с матричным элементом /5/. Полное сечение реакции /3/, рассчитанное с квадратом матричного элемента /5/ и усредненное по двум сеансам в разных геометриях, равно  $\sigma =$ = /0,13±0,02/ мбн. Сечение реакции /3/, измеренное нами при энергии 270 МэВ <sup>/1,2/</sup> равно /0,26±0,02/ мбн. Таким образом, при изменении энергии первичного пиона от 270 до 240 МэВ сечение реакции /3/ уменьшается в два раза.

|                |                                    | I reom.            | 01XC/8 - W         | Ceanc Nyz | II геометрия  | 01XC121 = M |
|----------------|------------------------------------|--------------------|--------------------|-----------|---------------|-------------|
| ии             | $N_{\pi^{\circ}\pi^{\circ}_{\Pi}}$ | <sup>о</sup> мбн   |                    | N#94.0.   |               | о мбн       |
|                |                                    | M 1                | Mg                 |           | M 1           | Mg          |
| $+\hat{c}_{3}$ | 458                                | 0,16               | 0,14               | 619       | 0,15          | 0,14        |
| ⁺ĉ,            | 350                                | 0,13               | 0,12               | 517       | 0,13          | 0,12        |
| ပို            | 382                                | 0,14               | 0,13               | 551       | 0,13          | 0,13        |
| +Ĉ 4           | 461                                | 0,16               | 0,14               | 626       | 0,15          | 0,14        |
|                | 1651                               | 0,15 <u>+</u> 0,03 | 0,13 <u>+</u> 0,02 | 2313      | $0,14\pm0,02$ | 0,13±0,02   |

Рис. 7. Угловые распределения нейтрона. Сплошная линия постоянный матричный элемент; пунктир - расчеты с матричным элементом /5/ при  $A = 0.5 m_{\pi}^{-2}$  и  $B = 4m_{\pi}^{-4} / 2^{1/2}$ ; итрих-пунктир - расчеты с матричным элементом /5/ при  $A = 0.3 m_{\pi}^{-2}$  и  $B = 3 m_{\pi}^{-4}$ .

В табл. 2 приведены результаты изотопического анализа реакций  $\pi N \rightarrow \pi \pi N$  при энергии 240 МэВ. В результате фитирования получены следующие значения изотопических ампли-

|                                                |                                 |                                    | Габлица 2                            |
|------------------------------------------------|---------------------------------|------------------------------------|--------------------------------------|
| Канал<br>реакции                               | Энергия<br>Т <sub>л</sub> (МэВ) | Эксперимент<br>σ (мбн)             | Результат фита<br>σ (мбн.)           |
| $\pi^- p \rightarrow \pi^+ \pi^- n$            | 252                             | 0,14+0,04 <sup>/8/</sup>           | 0,16 <u>+</u> 0,04                   |
| $\pi^{-}p \rightarrow \pi^{\circ}\pi^{\circ}n$ | 240                             | 0,13 <u>+</u> 0,02                 | 0,12 <u>+</u> 0,02                   |
| $\pi^{-}p \rightarrow \pi^{-}\pi^{\circ}p$     | 246                             | 0,08 <u>+</u> 0,18 <sup>/9/</sup>  | 0 <b>,03<u>+</u>0,</b> 16            |
| $\pi^+ p \rightarrow \pi^+ \pi^o p$            | 246                             | 0,018 <u>+</u> 0,010 <sup>/1</sup> | . <sup>0/</sup> 0,018 <u>+</u> 0,010 |
| $\pi^+ p \rightarrow \pi^+ \pi^+ n$            | 252                             | 0,023 <u>+</u> 0,005 <sup>/1</sup> | <sup>1/</sup> 0,023 <u>+</u> 0,005   |

10

Таблица I

туд в единицах  $/ M \delta h / {}^{1/2}$ :  $F_{10} = 0.91\pm0.07$ ;  $F_{32} = 0.24\pm0.03$ ;  $F_{31} = 0.16\pm0.06$ ;  $F_{11} = 0.25\pm1.08$ . Отношение амплитуд X =  $F_{10} / F_{32}$  при энергии 240  $M \ni B$  /кинетическая энергия в общей с.ц.и. - 62  $M \ni B$ / равно 3.8±0.6. Это же отношение при энергии 270  $M \ni B$  /кинетическая энергия в общей с.ц.и. - 83  $M \ni B$ /было получено равным 4.4+0.4

## ЛИТЕРАТУРА

- 1. Бунятов С.А. и др. ЯФ, 1977, 25, с.325.
- 2. Бельков А.А. и др. ЯФ, 1978, 28, с.1275.
- 3. Feynman R., Gell-Mann M. Phys. Rev., 1958, 109, p.193.
- 4. Gell-Mann M.G. Phys. Rev., 1962, 125, p.1067.
- 5. Бунятов С.А. и др. ПТЭ, 1976, 6, с.42.
- 6. Бунятов С.А. и др. ОИЯИ, 13-10157, Дубна, 1976.
- 7. Мусаханов Н.М. ЯФ, 1974, 19, с.630.
- 8. Батусов Ю.А. и др. ЯФ, 1965, 1, с.526.
- 9. Блохинцева Т.Д. и др. ЖЭТФ, 1963, 44, с.498.
- 10. Батусов Ю.А. и др. ЯФ, 1975, 21, с.308.
- 11. Кравцов А.В. и др. Препринт ЛИЯФ №29О, 1976.