

Объединенный институт ядерных исследований

дубна

C346.48 A-646

23/1-79

P1 - 12110

Н.С.Ангелов, В.Г.Гришин, Р.А.Кватадзе

1585 2-79

ИССЛЕДОВАНИЕ ОБРАЗОВАНИЯ МНОГОПИОННЫХ СИСТЕМ В ЗАВИСИМОСТИ ОТ ИХ ПОПЕРЕЧНЫХ ИМПУЛЬСОВ В 77 - р-ВЗАИМОДЕЙСТВИЯХ ПРИ р = 40 ГЭВ/С

P1 - 12110

Н.С.Ангелов, В.Г.Гришин, Р.А.Кватадзе*

ИССЛЕДОВАНИЕ

ОБРАЗОВАНИЯ МНОГОПИОННЫХ СИСТЕМ В ЗАВИСИМОСТИ ОТ ИХ ПОПЕРЕЧНЫХ ИМПУЛЬСОВ В 77 р-ВЗАИМОДЕЙСТВИЯХ ПРИ р = 40 ГЭВ/С

Направлено в ЯФ

* Московский государственный университет им. М.В.Ломоносова. Ангелов Н.С., Гришин В.Г., Кватадзе Р.А.

P1 - 12110

Исследование образования многопионных систем в зависимости от их поперечных импульсов в *π*⁻р -взаимодействиях при р = 40 ГэВ/с

В работе изучаются некоторые характеристики многопионных систем в зависимости от их поперечных импульсов в $\pi^- p$ -взаимодействиях при p = 40 ГэВ/с. Получено, что средний поперечный импульс системы растет с ростом эффективной массы и практически не зависит от числа частиц и заряда системы. Показано также, что неинвариантные дифференциальные сечения для (m π) -систем удовлетворительно аппроксимируются экспонентой exp [-(E₁-M)/T]с T = 130 МэВ. Значение параметра T слабо зависит от числа частиц и заряда (m π)-системы, а также от ее эффективной массы.

Работа выполнена в Лаборатории высоких энергий ОНЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1979

Angelov N.S., Grishin V.G., Kvatadze R.A. Pl - 12110

Investigation of Multipion System Production Versus Their Transverse Momenta in $\pi^- p$ -Interactions at p = 40 GeV/c

Some characteristics of multipion systems are studied versus their transverse momenta in $\pi^- p$ -interactions at p = 40 GeV/c. It is found that the average transverse momentum of such a system increases with increasing the effective mass and is practically independent on the number of particles and system charge. It is also shown that the noninvariant differential cross sections for $(m\pi)$ -systems are satisfactorily approximated by the exponent $exp[-(E_{\perp}-M)/T]$ with $T \approx 130$ MeV. The parameter T is weakly dependent on the number of particles, on $(m\pi)$ -system charge and its effective mass.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1979

§1. ВВЕДЕНИЕ

Одним из наиболее интересных свойств процессов множественной генерации частиц является приблизительное постоянство среднего поперечного импульса ($<P_{\perp}>$) вторичных частиц в ускорительном интервале энергии /1-10³ / ГэВ. Из экспериментов известно, что $<P_{\perp}>$ слабо зависит от типа и энергии сталкивающихся частиц и растет с массой вторичных частиц. Эти результаты служат исходными пунктами для построения теоретических моделей.

При высоких энергиях, когда рождается много пионов, такое же значение для теории имеют свойства многопионных систем $(m\pi)$. Несмотря на то, что в этом случае происходит обильное рождение резонансов, свойства многопионных систем практически нечувствительны к ним. Это связано с тем обстоятельством, что число случайных комбинаций пионов велико и сигналы от резонансов малы. Обычно даже для двухпионных комбинаций величина сигнала от резонансов не превышает /5-10/%. Поэтому представленные в этой работе данные по $(m\pi)$ -системам связаны не с резонансами, а в основном со случайными комбинациями пионов и отражают общие свойства процессов множественного рождения.

В данной работе изучаются некоторые характеристики $(m\pi)$ -систем в зависимости от их поперечных импульсов в $\pi^- p$ -взаимодействиях при $p = 40 \Gamma \beta B/c$.

Экспериментальный материал был получен с помощью двухметровой пропановой пузырьковой камеры ЛВЭ ОИЯИ, облученной на ускорителе ИФВЭ. Основные методические особенности эксперимента описаны в работах /1-3/. Здесь только отметим, что все вторичные заряженные частицы, за исключением протонов в интервале импульсов O,15 $\Gamma \mathcal{J}B/c \leq P_{nab.} \leq O,7 \ \Gamma \mathcal{J}B/c$, считались пионами. Протоны в этом интервале импульсов идентифицировались по ионизации. Примесь неидеитифицированных протонов среди вторичных положительных частиц составляет ~15%, а примесь К[±]-мезонов и Σ^{\pm} -гиперонов не превышает /4-5/% /2,3/. Для физического анализа было отобрано около 17 ООО неупругих π^- р -взаимодействий.

\$2. ЗАВИСИМОСТЬ СРЕДНЕГО ПОПЕРЕЧНОГО ИМПУЛЬСА (mπ)-СИСТЕМ ОТ ЭФФЕКТИВНОЙ МАССЫ И ПРОДОЛЬНЫХ ПЕРЕМЕННЫХ (X,Y*)

Нами были исследованы поперечные импульсы для двух,- трех- и четырехпионных систем. Изучались всевозможные зарядовые комбинации для следующих реакций:

 $\pi^{-}p \rightarrow 2\pi + X \qquad (Q = -2, 0, +2),$ $\pi^{-}p \rightarrow 3\pi + X \qquad (Q = -3, -1, +1, +3),$ $\pi^{-}p \rightarrow 4\pi + X \qquad (Q = -4, -2, 0, +2, +4),$

где Q - полный заряд системы (m π).

На рис. 1 и 2 представлена зависимость среднего поперечного импульса от эффективной массы для трех- и четырехпионных систем. Здесь и далее на графиках будут приводиться только отдельные типичные ошибки. Из этих рисунков видно, что средний поперечный импульс растет с ростом эффективной массы и в пределах экспериментальных ошибок не зависит от заряда системы.

На *рис. 3* показана зависимость среднего поперечного импульса двух -, трех- и четырехпионных систем с любым зарядом от эффективной массы. Как видно, в области эффективных масс меньше 2,5 *ГэВ* поперечный импульс двухпионной системы больше, чем трех-и четырехпионной.

Рис. 1. Зависимость среднего поперечного импульса от эффективной массы для трехпионных систем при разных зарядах Q.

Рис. 2. Зависимость среднего поперечного импульса от эффективной массы для четырехпионных систем при разных зарядах.

4

Рис. 3. Распределение среднего поперечного импульса по эффективной массе $(m\pi)$ -систем.

При больших массах, возможно, ситуация меняется, но экспериментальные ошибки не позволяют сделать определенных выводов. Такой характер зависимости наблюдался для pp-взаимодействий при 102 и 400 ГэВ/с^{/4/}.

Мы также исследовали завнсимость среднего поперечного импульса для $(m\pi)$ -систем от свободной энергии $M = M_{3} \phi \phi$. $-m M_{\pi}$. Как видно из *рис.* 4, значения $< P_{\downarrow} > в$ области $M \leq 2$ ГэВ не зависят от числа частиц в системе. Для области $M \geq 2$ ГэВ трудно сделать какие-либо выводы, так как экспериментальные ошибки велики.

Таким образом, средний поперечный импульс многопионной системы сильно зависит от ее эффективной массы и практически не зависит от заряда системы и числа частиц, входящих в нее.

В табл. 1 приведены значения < P₁ > для всех событий. Они растут с увеличением числа частиц в системе. Это связано с тем обстоятельством, что максимум в распределении по $M(m\pi)$ сдвигается в сторону больших значений масс с увеличением m. Для двухпионных систем этот максимум находится в областн \approx **О,5** Γ э **В**, для (3π) -

Таблица 1

Средние поперечные импульсы (т π) - систем

mπ	<Р _↓ >, ГэВ/с	R _m	Модель
1π	0,365 <u>+</u> 0,005		
2π	0,56 <u>+</u> 0,03	1,0	1,0
3π	0,66 <u>+</u> 0,02	1,18 <u>+</u> 0,09	1,22
4π	0,79 <u>+</u> 0,02	1,41 <u>+</u> 0,11	1,42

Рис. 4. Зависимость среднего поперечного импульса от свободной энергии $(m\pi)$ -систем.

6

систем - в области $\approx 1,0$ *ГэВ*, а для четырехпионных - 1,5 *ГэВ*. Поэтому рост $< P_{\downarrow} > с$ увеличением m в основном связан с зависимостью $< P_{\downarrow} > = f(M_{9\varphi\varphi}) / cм.$ *рис. 3/.* В *табл. 1* приведены также величины отношений $R_{m} = < P_{\downarrow} > m\pi / < P_{\downarrow} > 2\pi$ и предсказания модели некоррелированных систем пионов $^{/5/}$. Как видно, полученные значения R_{m} хорошо согласуются с теоретическими.

Были также исследованы зависимости среднего поперечного импульса $(m\pi)$ систем от переменной Фейнмана X = $2P_{\parallel}^* / \sqrt{S}$ и продольной быстроты в с.ц.и. $(Y^* = 0.5 \ln (E^{**} + P_{\parallel}^*) / (E^* - P_{\parallel}^*))$. Они приведены на *рис.* 5 и 6. Поперечные импульсы больше для систем с большим числом частиц во всем интервале изменения этих переменных, что опять связано с $<P_{\perp} > = f(M)$. Кроме того, наблюдается провал в распределении по X вблизи точки

Рис. 5. Зависимость среднего поперечного импульса от X для $(m\pi)$ - систем.

X = 0. По-видимому, этот провал, как и для одночастичных спектров пионов, связан с влиянием фазового объема. Как следует из *рис.* 6, значения Y^* заключены в интервале $-2 \le Y^* \le +2$, который значительно уже, чем в случае однопионных спектров ($-4 \le Y^* \le +4$). В распределении по Y^* средний поперечный импульс систем больше в области фрагментации мишени $-2 \le Y^* \le -1$ и падает с увеличением Y^* . Область $-1 < Y^* < +1$ соответствует центральной области. В пределах экспериментальных ошибок зависимость $< P_{\perp} >$ от заряда системы отсутствует /см, например, *рис.* 7/.

§3. РАСПРЕДЕЛЕНИЕ (mπ)-СИСТЕМ ПО ПОПЕРЕЧНОЙ ЭНЕРГИИ

В последние годы появились теоретические и экспериментальные работы /5-7/, в которых изучается поведение

Рис. 6. Зависимость среднего поперечного импульса от $Y * \partial \pi (m\pi)$ -систем.

Рис. 7. Зависимость среднего поперечного импульса от Х при разных значениях заряда для двухпионной системы.

поперечных спектров многопионных систем в переменных

 $E_{\perp} = \sqrt{P_{\perp}^2 + M^2}$ и Y*. Оказалось, что зависимость неинвариантного дифференциального сечения от поперечной энергии (E_{\perp}) удовлетворительно описывается формулой Планка:

$$\frac{d^{3}\sigma}{d^{3}\vec{P}} \sim \frac{1}{\exp\left(E_{\perp}/T\right)-1},$$

где Т является параметром и слабо зависит от типа и числа частиц в системе.

Нами была исследована эта зависимость для $(m\pi)$ -систем, образованных в π p -взаимодействиях при p = = 40 ГэВ/с. Строились дифференциальные распределения

Таблица 2	2
-----------	---

πр 40 ГэВ/с

	⊎*<-1		¥ " ≤1		4*>1	
	T ± ∆T(M3B)	χ²/c.c .	T ± ∆T(M >B)	X ² /c.c.	Т±∆Т(Мэ₿)	X ² /c.c.
π	121 ± 4	92/48	121 + 2	85/48	118 ± 3	90/48
ຊກ	124±2	73/48	131 ± 1	50/48	121 ± 2	64 48
311	125±3	70/48	128 ± 2	64/48	115 ± 3	57/48

и полученные спектры аппроксимировались экспонентой $\exp\left[-(E_{\perp}-M)\ensuremath{\left(T \right)} \right]$.

Анализ проводился для π -мезонов, двух- и трехпионных систем в разных интервалах по быстроте: $|Y^*| \ge 1$ и $|Y^*| \le 1$, которые примерно соответствуют областям фрагментации мишени, пучка и центральной области. Полученные значения параметров $T \pm \Delta T$ и χ^2 на число степеней свободы приведены в *табл.* 2. Как видно, параметр T слабо зависит от числа частиц в системе и от продольной быстроты. Результаты аппроксимации для центральной области несколько лучше, чем для областей фрагментации, что может быть связано с эффектом лидирования пионов, которые искажают спектры.

Так же были построены и профитированы распределения для двух- и трехпионных систем в разных интервалах по эффективной массе в области $|Y^*| \leq 1$, где влияние законов сохранения энергии-импульса наименее существенно. Для выяснения вопроса, насколько параметр Т чувствителен к резонансам, специально выбиралась в спектре эффективных масс ($\pi^+ \pi^-$) -комбинаций область ρ° -мезона. Результаты аппроксимации представлены в *табл. 3.* Видно, что параметр Т слабо зависит от числа частиц в системе и от ее эффективной массы, а также нечувствителен к рождению резонансов.

10

Таблица З

π р 40 ГэВ/с				
	y" <1			
	Т ± ∆Т (м₃₿)	χ² /c.c.		
π	121 ± 2	85/48		
0,6-0,8	134±4	87/ 48		
2T (0,8 - 1,0	136 ± 5	64 48		
0,8-1,0	128±4	63/48		
511 (1,0 - 1,2	129±3	53/48		
П+П-вобар	136±4	61/48		

Рис. 8. Значения параметра Т.

Такой же результат был получен в работе^{/7/}, в которой изучались значения параметра Т для резонансов и нерезонансных комбинаций в $\pi^+ p$ -взаимодействиях при $p = 16 \Gamma \beta B/c$. Полученные значения параметра приведены на *рис.* 8.

Таким образом, распределения по поперечной энергии для $(m\pi)$ -систем удовлетворительно описываются $\exp\left[-\left[E_{\perp}-M\right)/T\right]$ с T $\approx 130 M \Im B$.

§4. ЗАКЛЮЧЕНИЕ

В результате изучения $(m\pi)$ -систем в π р -взаимодействиях при р = 40 ГэВ/с получены следующие результаты:

1. Средний поперечный импульс многопионных систем растет с ростом эффективной массы системы и слабо зависит от заряда и числа частиц в ней.

2. С увеличением числа частиц в системе средний поперечный импульс для всех событий растет и значение отношений согласуется с предсказаниями модели некоррелированных систем пионов /5/.

3. Средний поперечный импульс больше для систем с большим числом частиц во всем интервале изменения переменных X и Y*.

4. Получено, что зависимости неинвариантных дифференциальных сечений от поперечной энергии многопионных систем удовлетворительно аппроксимируются $\exp \left[-(E_{\perp} - M) / T\right]$, где значение $T \approx 130 \ M \Im B$ слабо зависит от числа частиц в системе и от ее эффективной массы.

Авторы признательны участникам Сотрудничества по исследованию множественных процессов в π^{-p} -соударениях при $p = 40 \Gamma \beta B/c$ за полезные обсуждения.

- 1. Абдурахимов А.У. и др. ОИЯИ, 1-6967, Дубна, 1973. 2. Абдурахимов А.У. и др. ЯФ, 1973, т.18, вып. 3,
- c.545.
- 3. Абдурахимов А.У. и др. ЯФ, 1971, т.18, вып. 6, с.1251.
- Stix P. et al. Phys. Rev., D,1977., 16, No. 3, p.558.
 Sats H. Proc. of the 1977 European Conf. on Particle Physics. Budapest, 1977, p.379.
- 6. Deutschmann M. et al. Nucl. Phys., 1974, B70, p.189.
- 7. Bartke J. et al. Nucl. Phys., 1977, B120, p.14.

Рукопись поступила в издательский отдел 20 декабря 1978 года.