ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

P1 - 12049

A-646 1267/2-79

.....

Н.С.Ангелов, С.Бацкович, В.Г.Гришин,

Л.Йеник, Т.Канарек

.....

НЕКОТОРЫЕ ХАРАКТЕРИСТИКИ МНОГОНУКЛОННЫХ ВЗАИМОДЕЙСТВИЙ *л*⁻ -МЕЗОНОВ ПРИ **р= 40** ГэВ/с

P1 - 12049

Н.С.Ангелов, С.Бацкович, В.Г.Гришин, Л.Йеник, Т.Канарек

НЕКОТОРЫЕ ХАРАКТЕРИСТИКИ МНОГОНУКЛОННЫХ ВЗАИМОДЕЙСТВИЙ *π*⁻ -МЕЗОНОВ ПРИ **р= 40** ГэВ/с

Направлено в ЯФ

Ī	063.0		1	1
	111		5. T U	í
N. 407 -	15.00	n iCri	A	_[

Ангелов Н.С. и др.

P1 - 12049

Некоторые характеристики многопуклопных взаимодействий *т* -мезонов при **р** = 40 ГэВ/с

Получены экспериментальные данные по спектрам вторичных π^{\pm} -мезонов, образованных во взаимодействиях π^{-} -мезонов с несколькими нуклонами ядра углерода при **р** = 40 ГэВ/с. Эти распределения (по продольному импульсу, быстроте и поперечному импульсу) сравниваются с аналогичными данными для π^{-} р-взаимодействий при той же энергии.

Работа выполнена в Лаборатории высоких энергий ОНЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1978

Angelov N.S. et al.

P1 - 12049

Some Characteristics of π^- -Meson Multinucleon Interactions at p = 40 GeV/c

Experimental data on spectra of secondary π^{\pm} -mesons produced in interactions of π^{-} -mesons with several nucleons of carbon nucleus at $p \approx 40$ GeV/c have been obtained. These distributions (over the longitudinal momentum, rapidity and transverse momentum) are compared to analogous data on $\pi^{-}p$ -interactions at the same energy.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nucleor Research. Dubna 1978

§1. ВВЕДЕНИЕ

В настоящей работе исследуются некоторые характеристики вторичных заряженных частиц в $\pi^-(\nu p)$ -взаимодействиях, которые сравниваются с данными по $\pi^- p$ -соударениям при той же энергии. Данные получены с помощью двухметровой пропановой пузырьковой камеры ЛВЭ ОИЯИ, облученной π^- -мезонами с $p = 40 \ \Gamma_3 B/c$ на серпуховском ускорителе. Статистика событий составляет $\approx 10000 \ \pi^{-12} C$ -взаимодействий.

Взаимодействия π^- -мезонов с несколькими протонами ядра углерода (π (ν p)), где $\nu = 2$, 3, 4, выделялись по величине $Q = n_+ - n_-$, которая равна разности положительных и отрицательных пионов в данном событии. Идентифицированные протоны с импульсом $p \leq 0,7 \ \Gamma \mathcal{B} / \mathcal{C}$ исключались при определении Q из-за неоднозначной интерпретации их образования. Протоны с $p \geq$ $\geq 0,7 \ \Gamma \mathcal{B} / \mathcal{C}$ в камере не идентифицируются^{*}. Они дают вклад в n_+ , поэтому приводимые ниже распределения π^+ -мезонов при $p \leq 5 \ \Gamma \mathcal{B} / \mathcal{C}$ имеют примесь протонов с $p \approx /0,7 \div 5 / \Gamma \mathcal{B} / \mathcal{C}$.

Характеристики многонуклонных взаимодействий по множественности вторичных частиц и методические особенности их выделения были опубликованы в работах $^{/1 \div 3/}$. Некоторые распределения по импульсам вторичных π^+ -и π^- -мезонов в таких событиях рассматривались в $^{/4/}$.

Как было показано в^{/3/}, число протонов, которые участвовали в неупругих взаимодействиях, составляет $\nu \approx Q+1$. Для увеличения статистики рассматриваются все события с $\nu > 3$.

^{*}Доля протонов с р \gtrsim 0,7 *ГэВ/с* по отношению с π^+ -мезонам составляет \approx 15%.

§2. ХАРАКТЕРИСТИКА ВТОРИЧНЫХ π⁺-И π[−] - МЕЗОНОВ ПО ПРОДОЛЬНОМУ ИМПУЛЬСУ И БЫСТРОТЕ

Отношение спектров π^{\pm} -мезонов для $\pi^{-}(\nu p)$ и $\pi^{-}p$ -взаимодействий:

$$\mathbf{R}(\mathbf{p}_{\parallel}) = \left(\frac{1}{\sigma_{\text{in}}} \frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{p}_{\parallel}}\right)_{\pi} - (\nu_{\text{p}}) / \left(\frac{1}{\sigma_{\text{in}}} \frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{p}_{\parallel}}\right)_{\pi} - \mathbf{p}$$

в зависимости от продольного импульса (p_{ii}) в лабораторной системе координат приведено на *рис. 1а,б.*

Отметим характерные особенности этих распределений. Из *рис. 1а* видно, что $\mathbb{R}^{\pi}(\mathbf{p}_{\parallel}) \sim 1$ при $\mathbf{p}_{\parallel} \approx 5 \div 7 \ \Gamma \mathbf{jB/c}$, т.е. при $\mathbf{x}_{1} \approx \frac{1}{8} \div \frac{1}{6} (\mathbf{x} = \mathbf{p}_{\parallel} / \mathbf{p}_{0})$. Это значение \mathbf{x}_{1} согласуется с предсказаниями аддитивной кварковой модели, где $\mathbb{R}(\mathbf{p}_{\parallel}) \sim 1$ при $\mathbf{x}_{1} \approx \frac{1}{6} / 5'$. В этой модели область $\mathbf{x} \geq \mathbf{x}_{1}$ связана с фрагментацией первичного пиона. В этой области $\mathbb{R}(\mathbf{p}_{\parallel}) < 1$ и достигает значений $\mathbb{R}(\mathbf{p}_{\parallel}) \sim 0.3$ для $\nu \geq 3$, т.е. число фрагментационных π -мезонов в $\pi^{-}(\nu \mathbf{p})$ - соударениях существенно меньше, чем в $\pi^{-}\mathbf{p}$ -взаимодействиях. Для π^{+} -мезонов /*puc. 16*/ $\mathbb{R}(\mathbf{p}_{\parallel}) \sim 1$ в области $\mathbf{p}_{\parallel} = 7 + 13 \ \Gamma \mathbf{jB/c}(\mathbf{x}_{1} = \frac{1}{6} \mp \frac{1}{3})$. Отличие $\mathbf{x}_{1}(\pi^{+})$ от $\mathbf{x}_{1}(\pi^{-})$ может быть связано с примесью протонов. В области фрагментации мишени ($\mathbf{x} \leq 0$) и центральной области ($0 \leq \mathbf{x} \leq \frac{1}{8}$) все значения $\mathbb{R}(\mathbf{p}_{\parallel})$ больше единицы. Из *puc. 1a*, бвидно, что вобласти $\mathbf{x} \leq 0$ множественность π^{\pm} -мезонов быстро растет с увеличением числа протонов, которые участвовали во взаимодействии / $\mathbb{R} \sim \nu$ или ν^2 /*. В центральной области можно считать $\mathbb{R}^{\pi^+}(\mathbf{p}_{\parallel}) \sim \nu$, что также предсказывается кварковой моделы / 5^{-} .

На *рис. 2а*, б приведены отношения спектров $\pi - \mu \pi^+$ -мезонов для $\pi^-(\nu p)$ - и $\pi^- p$ -взаимодействий

$$R(y) = \left(\frac{1}{\sigma_{in}} \frac{d\sigma}{dy}\right) \pi^{-}(\nu_{p}) / \left(\frac{1}{\sigma_{in}} \frac{d\sigma}{dy}\right) \pi^{-}_{p}$$

в зависимости от быстроты $(y = \frac{1}{2} ln \frac{E + p_{\parallel}}{E - p_{\parallel}})$ в лабораторной

системе координат ($y_{\pi a \widetilde{D}}$) и в системе центра инерции (y^*) .

Рис. 1. Отношение спектров π^{\pm} - мезонов в $\pi^{-}(\nu p)$ - $\ddot{}$ и в $\pi^{-}p$ взаимодействиях в зависимости от p_{\parallel} при $p = 40 \Gamma \Im B/c$.

^{*} Однако в этой области фазовые объемы для $\pi^- p$ -и $\pi^- (\nu p)$ взаимодействий существенно различаются. Поэтому быстрый рост R (p) с увеличением ν может быть частично связан с этим эффектом.

Рис. 2. Отношение спектров π^{\pm} -мезонов в $\pi^{-}(\nu p) - u$ в $\pi^{-} p$ взаимодействиях в зависимости от $y_{1ab}(y^{*})$ при $p = 40 \Gamma \Im B/c$.

Как хорошо известно, переменная у удобна для изучения спектров частиц в центральной области, границу которой мы оценим

из $x_1 = \frac{1}{6}^{/5/}$. В этом случае $y_1 \approx y_{max}^+ \ln x_1 \approx y_{max}^-$ in 6 = 4,5. Как видно из *рис.* 2, значение $R(y_{\pi a \bar{b}}) \approx 1$ для π^{\pm} -мезонов при $y_{\pi a \bar{b}} = 3,5 \pm 4,5$ и не зависит от заряда пионов (π^{\pm}) и от числа соударений ν . В центральной области ($y_{\pi a \bar{b}} \leq 4,5$) видна явная зависимость множественности пионов от ν и R(y) всегда больше единицы.

На рис. З приведена зависимость величины $(D_{\pi^-(\nu p)}^2(y) - D_{\pi^- p}^2(y))$ от числа соударений ν для $\pi^{\pm} - \mu$ π^- -мезонов. Разность этих дисперсий мала при всех ν . Кривая на этом рисунке - результат расчета по модели когерентной трубки $^{/6'}$. Экспериментальные данные явно не согласуются с ожидаемыми по этой модели. Интересно отметить, что данные по множественности вторичных частиц в $\pi^-(\nu p)$ -взаимодействиях не противоречат предсказаниям этой модели $^{/3/}$.

Рис. 3. Разность дисперсий распределений поу π^{\pm} -мезонов и π^{-} -мезонов в зависимости от ν при $p = 40 \Gamma \beta B/c$. Кривая расчет по модели когерентной трубки.

6

7

§3. РАСПРЕДЕЛЕНИЯ *π*[±] - МЕЗОНОВ ПО ПОПЕРЕЧНОМУ ИМПУЛЬСУ И ЗАРЯДУ

На рис. 4а, б приведены отношения вероятностей вылета π^- -и π^+ -мезонов в $\pi^-(\nu p)$ - и $\pi^- p$ -соударениях

 $\mathbf{R}(\mathbf{p}_{\perp}) = \left(\frac{1}{\langle \mathbf{n} \rangle \sigma_{\mathbf{i}\mathbf{n}}} \frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{p}_{\perp}}\right)_{\pi} - (\nu_{\mathbf{p}}) / \left(\frac{1}{\langle \mathbf{n} \rangle \sigma_{\mathbf{i}\mathbf{n}}} \frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{p}_{\perp}}\right)_{\pi} - \mathbf{p}$

в зависимости от поперечного импульса. Значения $R(p_{\perp})$ в пределах ошибок не зависят от числа соударений (ν). Отметим, что вероятность образования π^{\pm} -мезонов вобласти $p_1 = 0,3 \div 0,6 \ \Gamma_{3}B/c$ меньше в многонуклонных взаимодействиях, чем в $\pi^{-}p$ -соударениях. Аналогичное поведение $R(p_{\perp})$ в зависимости от p_{\perp} наблюдалось для взаимодействий пионов, каонов и нуклонов с ядрами в интервале энергий 50-275 $\Gamma_{3}B^{/7/}$. Рост $R(p_{\perp})$ для π^{+} -мезонов с $p_{\perp} > 1 \ \Gamma_{3}B/c$ может быть связан с примесью протонов /см. $\Im I/$.

На *рис. 5а, б* приведены распределения событий по суммарному заряду пионов

dQ		1	$d\sigma^+$	$d\sigma$		d۵		1	$d\sigma^+$	$d\sigma$,
dy	=	$\overline{\sigma_{\mathrm{in}}\left(\nu\right)}$	dy	<u> </u>	И	dp⊥	=	$\overline{\sigma_{in}(\nu)}$	dp ₁	- <u></u>)

в зависимости от быстроты и поперечного импульса для $\pi^- p \sim \mu \pi^- (\nu p)$ -взаимодействий. Нормировка этих распределений равна заряду систем вторичных частиц без идентифицированных протонов ($\nu = Q + 1$).

Из приведенных данных можно сделать следующие выводы. В многонуклонных взаимодействиях положительный заряд протонов мишени переносится, в основном, в центральную область / $y \le 3.2$, см. *рис. 5a*/и сосредоточен в интервале от О до О,6 ГэВ/с по поперечному импульсу /см. *рис. 56*/. При больших поперечных импульсах / $p_1 > 0.8$ ГэВ/с/ средний заряд близок к нулю. В области фрагментации π^- -мезонов ($y \ge 3.2$) средний заряд вторичных частиц уменьшается с ростом ν и для $\nu \ge 3 < Q \gg 0$.

Наблюдавшиеся особенности многонуклонных взаимодействий по продольным переменным (x, y) качественно согласуются с аддитивной кварковой моделью^{/5/} и противоречат модели когерентной трубки. Представляет интерес более детальное сравнение полученных данных с предсказаниями кварковой модели.

Рис. 4. Отношение спектров π^{\pm} -мезонов в $\pi^{-}(\nu p)$ - и в $\pi^{-}p$ взаимодействиях в зависимости от p_{\parallel} при $p = 40 \Gamma \Im B/c$.

8

9

Рис. 5а,б. Распределение полного заряда пионов в $\pi^{-}(\nu p) - u \pi^{-}p$ -взаимодействиях при $p = 40 \Gamma_{3}B/c$ в зависимости от у /a/ и p_{\perp} /б/. Здесь σ_{in} - неупругое сечение для данного типа событий ($\nu = 1, 2, 3...$).

Авторам приятно выразить благодарность В.М.Шехтеру, Ю.М.Шабельскому за многочисленные полезные обсуждения н участникам международного сотрудничества по исследованию множественных процессов за помощь в работе.

ЛИТЕРАТУРА

- 1. Ангелов Н.С. и др. ОИЯИ, Р1-10324, Дубна, 1976.
- 2. Ангелов Н.С. и др. ОИЯИ, Р1-11402, Дубна, 1978.
- 3. Ангелов Н.С. и др. ОИЯИ, Р1-11325, Дубна, 1978.
- 4. Ангелов Н. и др. ОИЯИ, Р1-11506, Дубна, 1978.
- 5. Anisovich V.V., Shabelsky Yu.M., Shekhter V.M. Nucl. Phys., 1978, B133, p.477.
- 6. Berlad G., Dar A., Eilam G. Phys. Rev., 1976, D13, p.161.
- 7. Garbutt D.A. et al. Phys. Lett., 1977, 67B, p.355.

Рукопись поступила в издательский отдел 30 ноября 1978 года.

10

11