ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

> 15/1-79 P1 - 11909

C-482 187/2-79 Б.Словинский, А.Томашевич, Э.Мулас, В.Чай

МНОЖЕСТВЕННОЕ ОБРАЗОВАНИЕ ЧАСТИЦ В СТОЛКНОВЕНИЯХ *я*-МЕЗОНОВ С ЯДРАМИ КСЕНОНА И ВОПРОС О ВРЕМЕНИ ФОРМИРОВАНИЯ АДРОНОВ

P1 - 11909

Б.Словинский, А.Томашевич, Э.Мулас, В.Чай

МНОЖЕСТВЕННОЕ ОБРАЗОВАНИЕ ЧАСТИЦ В СТОЛКНОВЕНИЯХ *я*-МЕЗОНОВ С ЯДРАМИ КСЕНОНА И ВОПРОС О ВРЕМЕНИ ФОРМИРОВАНИЯ АДРОНОВ

Направлено в ЯФ

Словинский Б. и др.

P1 - 11909

Множественное образование частиц в столкновениях *п* - мезонов с ядрами ксенона и вопрос о времени формирования адронов

Получены распределения по числу вторичных заряженных частии, испускаемых в *n*-Хе-взаимодействиях при 2,34; 3,5; 5 и 9 ГэВ/с. Экспериментальные распределения аппроксимировались двухкомпонентной функцией, вытекающей из модели квазисвободных взаимодействий. На основании наблюдаемой энергетической зависимости доли квазисвободных каналов взаимодействий сделан вывод о заметной роли времени формирования адронов в интервале импульсов первичных пионов 3 ГэВ/с.

Эксперимент выполнен при помоши ксеноновых пузырьковых камер.

Работа выполнена в Лаборатории высоких энергий и в ИТЭФ.

Препринт Объединенного института "дерных исследований. Дубна 19/8

Słowińsky B. et al.

P1 - 11909

Multiple Particle Production in *m*-Mesons-Xenon Interactions and Time of Hadron Forming

The charged secondaries multiplicity distributions in π -Xeinteractions at 2.34, 3.5, 5 and 9 GeV/c are obtained. Experimental distributions have been approximated by two-component function, which arises from the quasi-free interaction model. Based on the observed energy dependences of contributions of quasi-free interaction channels, the conclusion about a considerable role of forming time of hadrons in momentum interval of primary pions (3-9 GeV/c) is done.

The investigation has been performed at the Laboratory of High Energy and ITWF.

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

1. ВВЕДЕНИЕ

Множественное образование частиц является наиболее характерной чертой процесса взаимодействия быстрых адронов с нуклонами и с атомными ядрами. Вместе с тем множественность вторичных частиц - это самый простой, быстро и однозначно определяемыйв эксперименте параметр. Поэтому распределения по числу частиц, испускаемых в столкновениях при высоких энергиях, привлекают постоянное внимание как с экспериментальной, так и с теоретической точек зрения.

В настоящее время установлен ряд свойств обсуждаемого явления. При помощи различных моделей, в основном статистического характера, оказывается возможным связать распределение по числу вторичных частиц с механизмом взаимодействия быстрых адронов с атомными ядрами /напр., / 1,2/ /. В частности, большой интерес представляет вопрос о зависимости степени каскадирования в столкновениях быстрых частиц с ядрами от атомного веса ядра мишени и от энергии взаимодействия 2. Предполагается, что наблюдаемое расхождение между экспериментальными данными, относящимися к множественному рождению частиц в соударениях с атомными ядрами в области более высоких энергий, и соответствующими оценками, вытекающими из каскадно-испарительной модели, можно связать с эффектом формирования адронов, возникающих в результате столкновения падающей на ядро частицы с квазисвободным внутриядерным нуклоном. Это время, имеющее порядок величины $\tau = p/\mu^{2/3}$, где р - импульс частицы,

 μ - некая характерная масса, должно сказываться на картине взаимодействия, особенно в случае столкновения с достаточно тяжелыми ядрами/4.5/, уже в области значений импульсов первичных адронов в несколько $\Gamma_{\mathcal{B}B}^{/13}$. Следовательно, изучение процесса множественного образования частиц, в частности, зависимости распределения по кратности вторичных заряженных частиц, испускаемых во взаимодействии быстрых адронов с тяжелыми ядрами, от энергии сталкивающихся частиц, может пролить свет на этот интересный и весьма актуальный вопрос, имеющий прямое отношение к проблеме строения адронов.

В настоящей работе получены распределения по числу вторичных заряженных частиц, испускаемых в π^+ -Хевзанмодействиях при 2.34 ГэВ/с и в п⁻-Хевзаимодействиях при 3,5; 5 и 9 ГэВ/с. Анализ экспериментальных результатов проведен в рамках разработанной одним из авторов модели квазисвободных взаимодействий /6/ и вытекающей из нее возможности представить распределение по числу продуктов реакции в виде суперпозиции двух компонентов: распределения, происхоляшего от однократного столкновения первичной частицы с квазисвободным нуклоном ядерной мишени, без существенного влияния остальной части ядра на характеристику вторичных частиц, и распределения, обусловленного многочастичными внутриядерными взаимодействиями / 7:8/ Эксперимент выполнен при помощи 26-литровой ксеноновой пузырьковой камеры ОИЯИ /далее:КПК/ и 180литровой КПК ИТЭФ в Москве.

2. ЭКСПЕРИМЕНТ

В результате просмотра около 100 *выс.* снимков с КПК, облученной в пучках π^+ -мезонов с импульсом 2,34 ГэВ/с и π^- -мезонов с импульсом 3,5; 5 и 9 ГэВ/с, было выбрано 13148 случаев взаимодействий π -мезонов с ядрами ксенона. Для каждого случая было определено число п следов вторичных заряженных частиц, причем к п причислялись только те следы, длина которых была не меньше 5 мм в камере. Это соответствует импульсу *п*-мезонов примерно 50 *МэВ/с* и протонов 200 *МэВ/с*. Число выбранных случаев *п*-Хе-взаимодействий при различных значениях n и импульсов первичных мезонов приведено в *табл*. 1.

3. МНОЖЕСТВЕННОСТЬ ЗАРЯЖЕННЫХ ЧАСТИЦ

Как уже отмечалось, на основании модели квазисвободных взаимодействий ^{/6/}распределение p(n) по числу n вторичных заряженных частиц, испускаемых в столкновениях быстрых адронов с атомными ядрами, можно записать в виде суммы двух распределений:

í.

 $p(n) = [Af_{1}(n) + (1 - A)f_{2}(n)], \qquad /1/$

где $f_1(n)$ описывает частоту эмиссии частиц, образованных в столкновении налетающего адрона с квазисвободным нуклоном ядра-мишени, без заметных искажений, вносимых вторичными столкновениями, за исключением упругого перерассеяния на небольшие углы; $f_2(n)$ означает распределение по числу вторичных заряженных частиц в столкновениях, где существенную роль играют многочастичные внутриядерные взаимодействия; А - доля квазиэлементарных каналов реакции, которая, как было показано^{6/}, в случае π^+ -Хе- взаимодействия при 2,34 ГэВ/с равна ~O,3O. В рассматриваемой области энергий в качестве функции $f_1(n)$ целесообразно принять распределение Пауссона /напр. /9//:

$$f_1(n) = \frac{\lambda_1^n}{n!} \exp(-\lambda_1).$$
 /2/

Естественно также аппроксимировать испускание заряженных частиц, обусловленное многочастичными столкновениями внутри ядра, простейшим, пауссоновским процессом. Таким образом,

$$f_2(n) = \frac{\lambda_2^n}{n!} \exp(-\lambda_2). \qquad (3/$$

4

5

частиц. зар яженных вторичных Γ∋B/c. £ -мезонов, выраженнный u числу 011 .*п*-Хе-взаимодействий Ħ -импульс первичных Распределение \mathbf{p}_{π}

	≥18	1	1	0I	32	
	11	1	н	Ś	I5	
	I6	1	н	2	27	
	15	ı	~	, I6	32	
	14	m	Ś	26	38	
	n	IS	H	34	34	
	12	26	35	36	49	
	H	90	82	43	5	
	DI	I85	166	64	66	
	6	333	264	80	3	
•	ω	488	334	77	81	
	2	644	466	77	76	
	9	702	488	92	8	
	2	704	608	66	85	
	÷	710	645	107	8	
	~	730	668	102	2	
	2	597	598	80	45	
	н	992	462	40	æ	
	0	26	72	പ	6	
	4	2.34	3.5	Ś	6	

Так как среди выбранных случаев *n*-Хе-взаимодействий имеется незначительная доля *a*-событий упругого рассеяния *n*-мезонов на ядре ксенона, то функция, которой описывались полученные экспериментально распределения, принимает следующий вид:

$$p(n) = \left[A\frac{\lambda^{n}}{n!}\exp(-\lambda_{1}) + (1-A)\frac{\lambda^{n}}{n!}\exp(-\lambda_{2})\right](1-a) + a\delta_{1,n}, \quad /4/$$

где $\delta_{1,n}$ - символ Кронеккера. При этом параметрами, определяемыми в результате статистической подгонки. были: А, λ_1, λ_2 и а. Численные значения этих параметров для четырех значений импульсов π -мезонов приведены в *табл. 2.* Там же даны соответствующие значения вероятностей фитирования. Указанные в таблице ошибки получены на основании аналогичного анализа альтернативного экспериментального материала *. Таким образом, определенные ошибки более адекватны действительности, чем ошибки фитирования.

Из табл. 2 следует, что коэффициент А, имеющий смысл оценки вклада от каналов квазисвободных взаимодействий в множественное образование частиц в столкновениях π -мезонов с ядрами ксенона, увеличивается с ростом импульса первичных пионов. Можно также заключить, что вычисленные средние значения вторичных заряженных частиц в классе квазисвободных взаимодействий λ_1 , не отличаются, при достигнутой точности эксперимента, от соответствующих значений, относящихся к пион-нуклонным взаимодействиям при тех же энергиях / 10, 11/.

4. ОБСУЖДЕНИЕ И ВЫВОДЫ

Согласно модели квазисвободных взаимодействий, в основу которой положен стохастический характер процесса проникания быстрого адрона через ядерную мишень, доля взаимодействий квазисвободного типа со-

^{*}Авторы благодарны К.Миллер за предоставление соответствующих данных.

3
ą
In
5
'a

pacnpe*т*-Хе -взаимоаппрокси миру ющей значения тестовой X k - Значени. - вероятность фитирования испускаемых в функции /4/, частиц, a импульсе р_п первичных пионов. А, А₁, А₂ И а Заряженных ч степенях свободы. кратности вторичных значения параметров ч иdп N. X действиях при ${}^{\times}$ деления по статистики Численные

(LaB/c)	2.34	3.5	'n	σ
	0.30 ± 0,02	0.41 ± 0.03	0.44 ± 0.03	0.54 ± 0.03
	2.25 ± 0.07	3.3 ± 0.5	3.9 ± 0.7	5.0 ± 0.8
	6.20 ± 0.07	8.0 ± G.5	9.5 ± 0.6	II.6 ± I.0
	0.06	Ο	10.0	0.02
14	7.4.7	11/0°6	7.3/12	12.9/14
	04	62	84	53

ставляют A = 0,29 от полного сечения неупругих π^+ - Xe соударений при 2.34 ГэВ/с /6/. В рамках того же подхода было заключено, что эта величина, по крайней мере, не должна возрастать при увеличении энергии первичных пионов. Подтверждением этому были экспериментальные результаты, имеющие в основном характер оценки нижней границы величины А. Эти экспериментальные результаты были получены путем сравнения угловых и импульсных распределений вторичных π мезонов, испускаемых в пион-нуклонных взаимодействиях с соответствующими распределениями π° -мезонов. образованных в постулированной выборке п-Хе-взаимодействий при тех же энергиях, в которой число n вторичных заряженных частиц не превышало n < 4. Не оказалось, однако, возможным при достигнутой точности эксперимента изучить вопрос о чувствительности примененного экспериментального метода относительно верхнего значения числа n для рассматриваемого класса квазисвободных взаимодействий. Именно от верхнего значения числа n зависит экспериментально определенная доля квазисвободных каналов взаимодействий. Этот недостаток устраняется при изучении распределений по кратности вторичных заряженных частиц, испускаемых в столкновениях быстрых адронов с атомным ядром.

Интересно отметить, что если принять в формуле /4/ коэффициент А постоянным и равным, например О,3, как это вытекает из ранее полученных экспериментальных оценок, то не удастся описать единым образом распределение по числу п вторичных заряженных частиц при всех четырех рассмотренных значениях энергин π -мезонов. Это иллюстрирует *табл.* 3, в которой приведены результаты расчета коэффициентов λ_1, λ_2 и α - функции /4/ при условии, что A=O,3. Видно, что вероятность параметризовать функцией /4/ полученные экспериментальные распределения, мала уже при значении импульса первичных π -мезонов ρ_{π} =3,5 Γ_3B/c и значительно уменьшается с ростом ρ_{π} .

На основании выполненного в настоящей работе анализа следует заключить, что, вопреки ожиданиям, вытекающнм из простого статистического подхода крассмотрению процесса взаимодействия быстрых *п*-мезонов

8

9

Таблица З

Тож	е. что	6	табл.	2,	HO	npu	условии,	что	A =0.3
-----	--------	---	-------	----	----	-----	----------	-----	--------

P _f (IDB/C)	2.34 3.5		5	9	
λ;	2.25	2.6	3.2	4.00	
λ_2	6.20	7.5	8.6	IC.3	
\propto	0.06	0	0.01	0.01	
R2/4	7.4/7	23.5/II	48 . 2/I3	73.4/I5	
P(%)	40	~3	≪I	≪I	

с ядром ксенона, вклад от каналов квазисвободного типа заметно увеличивается с энергией первичных пионов. Это явление можно понять, если учесть, что с ростом энергии увеличивается время формирования вторичных адронов. По порядку величины это время принимаетгде р - импульс вторичной часся равным $\tau = p/\mu^2$, тицы, µ - некая адронная масса, величина которой, оцененная на основании экспериментальных данных по инклюзивному рождению "-мезонов на ядрах/ 12/, примерно равна $\mu^2 < /0,25 \div 0,30 // \Gamma \mathfrak{B}/^{2/13/}$. Оценено также. что время формирования адронов становится существенным уже при p < 3 ГэВ/с. Следовательно, полученный в настоящей работе результат может служить указанием на проявление эффекта формирования вторичных адронов в столкновении п - мезонов с ядрами ксенона в области энергий р $_{\pi} \geq 3,5 \ \Gamma$ эB/c, которая совпадает с соответствующими оценками, полученными на основании партонной модели / 3, 13/ Следует, однако, отметить, что увеличение доли А квазисвободных взаимодействий с ростом энергии сталкивающихся с ядром *п*-мезонов, может быть, по крайней мере, частично, обусловлено также увеличением роли резонансов в пион-нуклонных столкновениях^{*}. По оценочным данным, не менее 50% всех *п*-мезонов в этих столкновениях образуется от распада резонансов^{/14}/и их вклад может заметно расти с энергией.

ЛИТЕРАТУРА

- 1. Slowinski B. Reports of the Institute of Physics. No. 17. Warsaw Technical University. Warsaw, 1977.
- Bialas A., Czyz W. Phys.Lett., 1975, 58B, No. 3, p.325; Report TPJU-2/78, INO-992/PH. Cracow, 1978.
- 3. Фейнман Р. Взаимодействие фотонов с адронами. Изд. "Мир", М., 1975.
- 4. Демьянов А.И., Мурзин В.С., Сарычева Л.И. Ядернокаскадный процесс в плотном веществе. Изд. "Наука", М., 1977.
- 5. Анисович В.В. и др. ЯФ, 1978, 27, вып. 6, с. 1639.
- 6. Словинский Б. ЯФ, 1974, 19, вып. 3, с. 595.
- 7. Словинский Б. ОИЯИ, 1-10932, Дубна, 1977.
- 8. Охрименко Л.С. и др. ЯФ, 1974, 19, вып. 6, с. 1262.
- 9. Czyzewski O., Rybicki K. Nucl. Phys., 1972, B47, p.633.
- 10. Барашенков В.С., Мальцев В.М., Патера И. ОИЯИ, P-1577, Дубна, 1964.
- 11. Binkley M.E. et al. Phys.Lett., 1973, B45, p. 295.
- 12. Барабаш Л. и др. ЯФ, 1976, 24, вып. 2, с. 361.
- 13. Шабельский Ю.М. В сб.: Физика элементарных частиц. XIII зимняя школа ЛИЯФ, Л., 1978, ч. 1, с.90-138; Анисович В.В. и др. Препринт ЛИЯФ, №352, Л., 1977.
- 14. Grassler H. et al. Nucl. Phys., 1977, B123, р. 1. Ангелов Н. и др. ЯФ, 1977, 25, с. 117; Беляков В.А., Бубелев Э.Г., Кузнецова Е.С. Письма в ЖЭТФ, 1968, 8, вып. 4, с. 197.

Рукопись поступила в издательский отдел 22 сентября 1978 года.

^{*} Авторы благодарны В.А.Белякову, указавшему на такую возможность.