ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ АУБНА

15/1-79 P1 - 11890

C-482

Б.Словинский

135 2-79

ФЛУКТУАЦИИ В ЭЛЕКТРОННО-ФОТОННЫХ ЛИВНЯХ. ОБРАЗОВАННЫХ ГАММА-КВАНТАМИ С ЭНЕРГИЕЙ 30-3400 МэВ

P1 - 11890

Б.Словинский

ФЛУКТУАЦИИ В ЭЛЕКТРОННО-ФОТОННЫХ ЛИВНЯХ, ОБРАЗОВАННЫХ ГАММА-КВАНТАМИ С ЭНЕРГИЕЙ 30-3400 МэВ

Направлено в "Письма в ЖЭТФ"

0620200	fernum	TEGHELY	TI
MECHINE:3	1.7742	- HOBERE	
- GME	MMO'	TEHA	

Словинский Б.

Флуктуации в электронно-фотонных ливнях, образованных гамма-квантами с энергией 30-3400 МэВ

В работе собраны и проанализированы результаты измерений ионизационных потерь ливневых электронов в электронно-фотонных лавынах, вызванных гамма-квантами с энергией 30-3400 МэВ в жидком ксеноне. Получена простая и удобная для практического использования аппроксимация зависимости между относительной длсперсией σ_A/A доли А энерговыделения в ливнях, соответствующих глубине развития, на которой, в среднем, выделяется доля А энергии лавины, и параметром А. Полученный результат может найти применение в различных методиках регистрации гамма-квантов высоких энергий.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1978

Slowiński B.

P1 - 11890

Fluctuations in Electron Showers Produced by Gamma-Quanta of 30-3400 MeV Energies

Results of measurements of ionization losses for shower electrons in electron-photon showers produced by gamma-quanta of 30-3400 MeV energies in liquid xenon are asssembled and analyzed. A simple and convenient for practical utility approximation is obtained of dependence between relative dispersion σ_A/\bar{A} and the parameter A, being the fraction of energy spent by electrons on the development depth on which on the average the fraction A of the total energy of shower is realized. The obtained results can be applied in various methods of registrating high energy gamma-quanta.

The investigation has been performed at the Laboratory of High Energies , JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

1. ВВЕДЕНИЕ

Флуктуации энерговыделения в электронно-фотонных ливнях являются одним из основных источников ошибок в определении энергии Е_у первичных гамма-квантов, образующих эти ливни в регистрирующей среде детектора. Поскольку в области достаточно высоких энергий Е_у /несколько десятков *МэВ* и выше/ продольные размеры лавин значительно превышают их поперечные размеры, то определяющими являются практически именно флуктуации продольного развития ливней.

В качестве оценки флуктуации продольного развития лавины целесообразно взять величину относительной дисперсии σ_{A} / \overline{A} доли A суммарного пробега ливневых электронов, соответствующей длине d развития ливия. на которой, в среднем, выделяется в виде ионизации доля А полной энергии лавины / 1-4/Такой выбор удобен тем, что величины А и σ_A/A не зависят от свойств конкретной среды. в которой развивается электромагнитный ливень. Так как, в дополнение к этому, А является хорошей оценкой не только доли суммарных ионизационных потерь ливневых электронов, но также суммарного светового эффекта, сопровождающего каскадный электромагнитный процесс, и суммарного числа электронов и позитронов ливня, наблюдаемых на данной длине его развития / 2/ то продольные флуктуации энерговыделения в лавине, выраженные в виде зависимости относительной дисперсии σ_A/A параметра A от А, могут найти практическое применение в любой метолике детектирования гамма-квантов высоких энергий.

В настоящей работе приведены и проанализированы с точки зрения практического применения ранее полученные / 1-4/результаты измерения относительной дисперсин σ_{A}/\overline{A} доли A суммарного пробега ливневых электронов в электронно-фононных лавинах, вызванных гаммаквантами с энергией E_v =30÷3400 МэВ в жидком ксеноне.

2. Зависимость σ_A/\overline{A} от A

В табл. 1 содержатся значения относительных дисперсий σ_{A}/A доли А ионизационных потерь ливневых электронов на длине d полной энергии лавины. Приведенные данные соответствуют различным значениям энергии Е_v гамма-квантов, образующих ливни в жидком ксеноне. Можно заметить, что зависимость σ_{A}/\bar{A} от A весьма незначительно меняет вид при изменений энергии Е₁, на два порядка величины - от ЗО МэВ до 4 ГэВ. Это обстоятельство позволяет единым образом описать соотношение между σ_A/A и \overline{A} в широком интервале значений энергии E_γ гамма-квантов, образующих ливни. Для аппроксимации экспериментальных данных была взята следующая функция:

$$\sigma_{A}/\bar{A} = \left|\left\{\frac{1}{b}\ln\frac{a}{\bar{A}}\right\}^{\frac{1}{2}}\right|, \qquad /1/$$

где а и b - параметры, определяемые при статистической подгонке. Значения этих параметров, а также соответствующие значения вероятности фитирования для одиннадцати значений энергии ${
m E}_{
m v}$ приведены в табл. 2. Указанные ошибки относятся только к точности подгонки. Из приведенной таблицы видно, что с целью дальнейшего обобщения полученных экспериментальных данных можно положить b =13,6 ± 1,3 и

$$a(E_{\gamma}) = \alpha - \beta E_{\gamma}, \qquad /2$$

где $a = 1,02, \beta = 1,3 \cdot 10^{-3} / M э B^{-1}/.$

SEATORIES	OTROCETEJLENEX	фиуктув	1121 64 /A	ROLE A	ROBIES RIDOR	UNX DOTO	TOBELL TIBECE	ur szerrp	OHOB RA A	OHIN:
d dasent rama-res	ия лавня, на нтом с энергя	ROTOPOL I el E el 2 B 1	виделяется, кидком коен	, в сред юне. А	нем, доля А ^и б _А /Ā	полной выраже	энергии л ны в проц	авини, ос сентах.	разованно	ŧ
Er (MaB)	OI	20	30	40	20	60	70	80	06	95
30	36 <u>+</u> II	35±7	35_48	35 <u>+</u> 4	35 <u>4</u> 4	34±5	26 <u>+</u> 3	£ <mark>4</mark> €I	13 <u>+</u> 2	2 - 01
50	30 1 11	2 7 58	32_48	3344	27-4	24-15	52 7 3	2373	2 7 41	2 7 21
02	40 1 11	46±7	40 1 8	3644	30-14	27 <u>+</u> 5	22 + 3	18 - 3	15 <u>+</u> 2	1342
001	48 <u>+</u> 8	39 74	32.44 14	28-13	57 <u>+</u> 3	2542	2075	20-22	14-2	1 - 1
120	44 - 11	44±7	3743	4344	31 -1	29 7 5	51-73	23 - 3	18± 2	13+2
200	52 1 9	33 <u>+</u> 4	28 1 3	31 74	25 <u>+</u> 3	25 <u>+</u> 3	55 75	2 7 61	- 12 - 21	5 <u>+</u> I
500	50 <u>+</u> I0	35±7	2546	2646	25 -3	2145	17 <u>-</u> 4	14.3	2 - 11	1 ₁
TROO	39+7	27+6	25+5	24+4	22+4	20+4	17+3	11+2	7+2	5+I

∢ laduma RUOR

относительных флуктуаций 02 /2

Ð
5
H
g
5
0
5
õ
8
E.
\sim
Η.
9
8
Ξ.
5
2
ື

94	4 ± I	68	1±1	r		I		95	24I	ı		I		95	3+I
94	2 4 I	82	For I	I		06	IFOI	92	I 1 9	ł		95	Ŀ	16	8 1 2
92	1 ,	76	13 44	95	3H	80	14-3	83	For	95	Ŀ.	94	с г і	85	10+2
87	2 1 6	69	134	16	Į.	68	18 14	73	13 - 3	86	I+9	68	7 1	78	I3+3
77	2 7	19	1 7 17	82	₽ 1 1	60	2144	60	16 <u>+</u> 4	76	8 ⁴ 5	79	1246	89	I6+3
67	12 43	52	19 -4	- 12	13 1 3	51	23 <u>+</u> 4	22	19 -1 4	23	13 - 3	69	15 <u>+</u> 7	56	21+4
55	22 -4	42	21 1 5	58	18 1 4	42	22 - 52	43	2244	49	1744	55	7 <u>+</u> 61	50	23+4
43	2944	32	20 1 6	40	224	33	2646	33	2344	40	2044	45	22-17	42	25+4
32	37 <mark>-</mark> 4	23	24+6	31	16 <u>+</u> 5	25	28-17	24	26±5	22	24-4	31	22-17	æ	28+6
20	3614	14	24-17	22	28-7	Ħ	3246	OI	33 <u>1</u> 6	15	25±7	21	25±7	20	37+7
Q	31 1 5	8	30±7	14	35_+9	9	31 <u>+</u> 6	വ	36±7	ი	26±7	14	28 1 8	14	43+7
e	2848	e	33 <u>+</u> 8	8	54 <u>+</u> II	2	32-17	2	37±7	2	28±7	ى م	39 <u>+</u> I2	8	63+I2
ן עי	A/A	1	SA/A	1	X /	1	Å/Å		1		1.	A/A	1.	A/A	-/
Eyr (MaB)	875 0		I875 (2125		2375 2	6	2675 V			28/32 A	>~ I	3125 A	3375	

Таблица 2

Значения параметров α и β функции (I), аппроксимирукщей зависимость относительных флуктуаций δ_A/\overline{A} величины A от \overline{A} для лавин, образованных гамма-квантами с энергией E_{pr} в жидком ксеноне. P – вероятность фитирования по критерию χ^2_{pr} , n – число степеней свободы.

Er (NaB)	a	в	n	P (%)	
50	I,20 <u>+</u> 0,0I	II,4 <u>+</u> 5,I	8	78,4	
70	1,09 <u>+</u> 0,01	8,5 <u>+</u> 2,0	· 8	99,8	
100	1,01 <u>+</u> 0,01	10,3 <u>+</u> 1,6	8	73,4	
200	I,03 <u>+</u> 0,0I	10,3 <u>+</u> 1,5	8	31,6	
500	1,00 <u>+</u> 0,01	II,8 <u>+</u> 3,8	8	98,I	
1600	1,00 <u>+</u> 0,01	15,6 <u>+</u> 4,0	8	99,2	
2125	1,00 <u>+</u> 0,01	19 ,3<u>+</u>5,5	8	74,2	
262 5	0,98 <u>+</u> 0,0I	I9,5 <u>+</u> I0,3	10	~100	
287 5	0,96 <u>+</u> 0,0I	17,7 <u>+</u> 6,1	8	99 ,3	
31 25	0,99 <u>+</u> 0,0I	19,9 <u>+</u> 28,2	9	10	
33 75	0,96 <u>+</u> 0,0I	II,8 <u>+</u> 3,8	9	99,2	

Соотношение /2/ справедливо в области энергии $E_{\gamma} \ge 100 \, M$ эВ, которая с методической точки зрения представляет наибольший интерес.

Формула /1/ правильно описывает зависимость σ_A/\bar{A} от \bar{A} в интервале O,1 $\leq A \leq O,95$. Следует также отметить, что в интервале $A \geq O,5$, который имеет основное практическое значение, флуктуации доли А ионизационных потерь ливневых электронов симметричны относительно среднего значения \bar{A} , и их можно аппроксимировать нормальным распределением: $A \sim N(\bar{A}; \sigma_4^2)$.

3. Зависимость A on d

Для того чтобы воспользоваться на практике соотношениями /1/ и /2/, необходимо знать зависимость между средним значением доли А ионизационных потерь

6

7

ливневых электронов и соответствующей ей длиной d развития электронно-фотонного ливня, образованного гамма-квантом с данной энергией E_{γ} . Эту зависимость можно, в принципе, получить аналитическим путем, исходя из одномерных каскадных уравнений $^{/5}$ /а также численным путем, имитируя на ЭВМ методом Монте-Карло электромагнитный каскадный процесс, протекающий в определенном радиаторе /см., например $^{/6/}$. Автором было получено методом графической линеаризации экспериментальных данных соотношение между суммарным пробегом ливневых электронов и длиной развития ливней, вызванных гамма-квантами в жидком ксеноне $^{/7/}$. Выраженное через параметры А и d, это соотношение имеет следующий вид:

 $\overline{A} = 1 - \frac{1}{2} (10^{-10} + 10^{-10}),$ rge $X = 0,486 [(\lg d)^2 + 1,215\lg d - \frac{\lg(1,5 - \sqrt{3,3582 - \lg E_{\gamma}})}{0,225} - 5,1652],$

$$Y = 0.486[(\lg d)^{2} + 1.215\lg d + \frac{6.215(3.3582 - \lg E_{\gamma})}{\lg E_{\gamma} + 0.9918} - 5.7285].$$

Здесь длина d дана в радиационных единицах среды радиатора, энергия E_{γ} в *МэВ.* Для того чтобы получить значение доли \overline{A} , соответствующей длине развития d ливня, надо подставить в выражение /3/ вместо E_{γ} зарегистрированное прибором значение энергии E_{γ} (d). При этом получаем значение \overline{A}_0 в нулевом приближении. Следующее приближение вычисляется при подстановке в /3/ вместо E_{γ} величины $E_{\gamma}' = E_{\gamma}$ (d)/ \overline{A}_0 и т.д. Итерационный процесс можно прервать по достижении желаемой точности искомой величины \overline{A} , например, тогда, когда выполнено условие $\overline{A}_i - \overline{A}_{i-1} \leq Q$, где Q достаточно положить равным O,O1. Формула /3/ справедлива в интервале значений энергий гамма-квантов $E_{\gamma} =$ = 2O-2000 *МэВ*. 4. Выводы

На основании выполненного анализа результатов измерений ионизационных потерь ливневых электронов в электронно-фотонных ливнях, вызванных гамма-квантами с энергией E_{γ} =30-3400 *МэВ* в жидком ксеноне, можно заключить, что:

1. Флуктуации энерговыделения в продольном развитии лавин описываются при помощи простой формулы /1/ в широком интервале значений энергии E_v .

2. Безразмерная величина A, определенная как доля ионизационных потерь ливневых электронов на длине d развитня ливня, представляет собой также долю светового эффекта, создаваемого каскадным электромагнитным процессом в радиаторе толщиной d.

Следовательно, зависимость флуктуаций, выраженных в виде относительной дисперсии σ_A/\bar{A} , от \bar{A} , могут быть использованы при оценке точности определения энергии гамма-квантов высоких энергий, регистрируемых различными методами.

В заключение следует отметить, что для приблизительных оценок точность определения энергии гаммаквантов можно выразить непосредственно через параметр $\overline{A}^{/8/}$. Автор благодарен В.Пэрыту за помощь в выполнении на ЭВМ статистической подгонки.

ЛИТЕРАТУРА

- 1. Словинский Б., Стругальский З., Яновская Б. ЯФ, 1969, 9, с. 120.
- 2. Словинский Б., Стругальский З., Хуберт В. ЯФ, 1972, 16, с. 734.
- 3. Охрименко Л.С. и др. ЯФ, 1975, 22, с. 110.
- 4. Охрименко Л.С. и др. ОИЯИ, Е1-9210, Дубна, 1975.
- 5. Беленький С.З., Иваненко И.П. УФН, 1959, 69, с. 591; Рама-Кришман А. Элементарные частицы и космические лучи. "Мир", М., М., 1965; Стругальский З., Яблонский З. ОИЯЙ, Р1-8806, Дубна, 1975.

- Борковский М.Я., Круглов С.П. ЯФ, 1972, 16, вып. 2, с. 349; Препринт ЛИЯФ, 184, Л., 1975.
 Словинский Б. ОИЯИ, 1-10932, Дубна, 1977; Ивановская И.А. и др. ПТЭ, 1968, № 2, с. 39.
 Словинский Б. ОИЯИ, Р10-7681, Дубна, 1974.

Рукопись поступила в издательский отдел 13 сентября 1978 года.