ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

Е.Баля, Ш.Берчану, В.М.Карнаухов, Г.Келлнер,

К.Кока, А.Михул, В.И.Мороз

4519 2-78

5-219

З°-ГИПЕРОН В **л** · р-ВЗАИМОДЕЙСТВИЯХ ПРИ 16 ГэВ/с

P1 - 11654

P1 - 11654

Е.Баля, Ш.Берчану, В.М.Карнаухов, Г.Келлнер,² К.Кока, А.Михул, В.И.Мороз

З°-ГИПЕРОН В **л** р-ВЗАИМОДЕЙСТВИЯХ ПРИ 16 ГэВ/с

Направлено в ЯФ

	-						C Second S	
ļ	Ű.			• -	ł	s:::iC	retyn	
ļ	12					108	анай	
l		b.	أفرادها	d'A	24	EH	(A	1

¹ Центральный институт физики, Бухарест, СРР. ² ЦЕРН, Женева, Швейцария.

³ Университет, Бухарест, СРР.

Баля Е. и др.

Е°-гиперон в п⁻р-взаимодействиях при 16 ГэВ/с

Зарегистрирован случай рождения Е°-гиперона в л⁻р-взаимодействиях при 16 ГэВ/с в двухметровой водородной пузыръковой камере ЦЕРНа. Идентифицирован канал реакции с Е°-частицей, приведено угловое распределение частиц в системе центра масс л⁻р-взаимодействия. Нижняя границе сечения рождения Е°-гиперона в л⁻р-взаимодействиях равна (44⁺¹⁰¹) мкб.

Работа выполнена в Лаборатории вычислительной техники и автоматизации ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1978

Balia E, et al.

P1 - 11654

E°-Hyperon in π p-Interactions at 16 GeV/c

 Ξ° -hyperon production in 16 GeV/c $\pi^{-}p$ -interactions in the 2 m CERN hydrogen bubble chamber has been registered. Ξ° - production channel has been identified, particle angular distribution at $\pi^{-}p$ -interaction in c.m.s. is presented. The lower limit for Ξ° -hyperon cross section at $\pi^{-}p$ -interactions is $(44^{+101}_{-021})_{\mu b}$.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

🖸 1978 Объединенный институт ядерных исследований Дубна

При изучении рождения странных частиц в **Л** / -Взаимодействиях при 16 ГэВ/с на фотоснимках (~ 90000 кадров) с двухметровой водородной пузырьковой камеры ШЕРНа найдено 8-лучевое событие с **V**°, **б** и изломом на одном из вторичных отрицательных треков (рис. I). Результаты нескольких независимых измерений этого события обработаны на ЭВМ по системе программ ОИЯW I/.

I. После обработки по кинематической программе идентификации V°-частиц /2/ V°-частица надежно идентифицирована как Л-гиперон с импульсом (2105±30)МэВ/с, массой (1115,4±0,2)МэВ/с² и углом раствора между положительным и отрицательным треками (18,5±0,1)°. Точка вылета Л -гиперона совпадает с точкой конверсии Г-кванта, среднее значение χ^2 (3 уравнения связи) равно 0,94±0,29. В предположении вылета Л -частицы из точки пер-

 $<\chi_{1}^{2}> = II22\pm27, <\chi_{2}^{2}> = 639\pm24$.

вичного ПР-взаимодействия или точки излома отрицательного

трека соответственно

2. Проведен анализ отрицательного трека с изломом. Анализ кинематики возможных распадов отрицательной частицы, кинематики и законов сохранения квантовых чисел в первичном ПР-взаимодействии позволяет утверждать, что это распад Σ^+ -гиперона с импульсом < $R_{\rm e}$ > = (3419±67) M3B/c.

Вторичное взаимодействие в точке излома невозможно по следующим причинам. Трек после излома идентифицирован по ионизации как след *П*-мезона с импульсом *<P*_{*m*}-*>* = (299<u>+</u>6) МэВ/с. Угол, образованный им с направлением трека до излома, составляет (28<u>+</u>2)⁰. При этом поперечный импульс *П*-мезона больше I40 МэВ/с, в предположении *П*-р-рассеяния длина трека протона отдачи была бы не менее I см. 3. При обработке У -кванта получены следующие результаты: импульс положительной частицы(предполагаем, что это позитрон)<№+> (422,3±23,5) № В/с, импульс электрона

Кинематические оценки по известным формулам ^{/3/} показали несостоятельность предположения о том, что е является 6 -электроном в первой точке положительного трека (рис. I).

4. Сделано заключение, что в точке конверсии \mathcal{J} -кванта (рис. I)произошел распад Ξ° -гиперона, вылетевшего в результате $\pi^{-\rho}$ взаимодействия. Ξ° распался на Λ, π° -частицы, π° - на два \mathcal{J} -кванта, один из которых (\mathcal{J}_{I}) дал внутренных конверсихо (пара Далица), второй (\mathcal{J}_{2}) вышел из камеры. При расчете кинематики распада $\Xi^{\circ} \rightarrow \Lambda \pi^{\circ}$ (известно направление Ξ° -частицы и все параметры Λ -гиперона) получены следующие величины импульсов Ξ°, π° -частиц:

< ?= (2520±36) MaB/c,</pre>< ??</pre>< ??</pre>< ??</pre>< ??</pre>< ??</pre>< ??</pre>< ??</pre>< ??</pre><

Кинематика распада $\Xi^{\circ} \rightarrow \Lambda \delta_{I} \delta_{2}$ (при $\vec{P}_{I} \approx \vec{P}_{e^{+}} + \vec{P}_{e^{-}}$) пает следующие значения для импульсов частиц:

$$\langle \rho_{2} \rangle = (2513\pm38) \text{ MaB/c},$$

 $\langle \bar{\rho}_{1} \rangle = (421\pm24) \text{ MaB/c},$
 $\langle \rho_{2} \rangle = (32\pm4) \text{ MaB/c},$
 $\langle \rho_{2} \rangle = (432\pm24) \text{ MaB/c}.$

Величины

$$\langle M_{\gamma/\delta 2}^{\circ \phi \phi} \rangle = (133, 3\pm 1, 6) \text{ MoB/c}^2.$$

5. В таблице представлены значения вычисленных параметров частиц в восьмилучевом событии.

Nene IIII	Частица	Импульс (МэВ/с)	Азимутальный угол(градусы)	Угол погр уж ения (градусы)
	π_{T}	16244 <u>+</u> 160	359,72 <u>+</u> 0,0I	-0,17 <u>+</u> 0,04
Ι.	Σ+	3419 <u>+</u> 67	I,76 <u>+</u> 0,27	4,83 <u>+</u> 2,10
2.	Π-	736 <u>+</u> 10	11,50 <u>+</u> 0,11	-10,97 <u>+</u> 0,21
3.	Π-	676<u>+</u>9	358,76 <u>+</u> 0,I3	I,II <u>+</u> 0,2I
4.	π^{-}	252 <u>+</u> 4	334,46 <u>+</u> 0,23	4,40 <u>+</u> 0,53
ō.	K+	4570 <u>+</u> 62	355,65 <u>+</u> 0,03	2,75 <u>+</u> 0,05
6.	π+	838 <u>+</u> 10	358,50 <u>+</u> 0,09	4,89 <u>+</u> 0,I8
7.	π^{\star}	974 <u>+</u> 12	358,77 <u>+</u> 0,08	0,79 <u>+</u> 0,I6
в.	P	2724 <u>+</u> 39	3,28 <u>+</u> 0,04	-10,68 <u>+</u> 0,08
	=•	2513+38	0.70+0.06	-2.69+0.17

Таблица

Была предпринята попытка, оказавшаяся успешной, идентифицировать это событие с помощью кинематической программы идентификации каналов реакций $^{5/}$, не включая в рассмотрение зарегистрированный Ξ° -гиперон. Событие удовлетворяет гипотезе с одним уравнением связи: $\pi^{-}P - \tilde{\Sigma}^{+}\pi^{-}\pi^{-}\pi^{-}\kappa^{+}\pi^{+}\pi^{+}\rho(\Xi^{\circ})$. Среднее значение млнимизируемого функционала равно $<\chi^{2}> =$ I,6I±0,38. Параметры недостающей частицы в пределах ошибок совпадают с параметрами идентифицированного ранее Ξ° -гиперона.

Далее в программу идентификации $^{5/}$ были введены данные о \equiv -частице, полученные ранее (см. таблипу). Обсчет события по программе $^{5/}$ (по той же гипотезе) с четырымя уравнениями связи подтвердил надежность идентификации события ($<\chi^2 > = 4$, II+0,6I).

Таким образом, можно считать, что действительно зарегистрирован случай рождения Ξ° -гиперона в $\pi^{-}\rho$ -взаимодействиях при 16 ГэВ/с в реакции $\pi^{-}\rho + \tilde{\Sigma}^{+}\pi^{-}\pi^{-}\pi^{-}\kappa^{+}\pi^{+}\pi^{+}\rho \equiv \circ$.

Рис. I. Фотография и схема события.

Рис. 2. Продольние (Р^{*}) и поперечные (Р^{*}) импульсы частиц события в системе центра масс **Л**. Р-взаимодействия. 6. Других случаев распада Ξ°→ΛЛ°(Л°→ е*е⁻у, Л°→ уу) в 4; 6; 8; Ю-лучевых событиях на имеющемся экспериментальном материале 90000 фотоснимков не обнаружено. Поскольку просмотр пленок с целью поиска Ξ° -гиперона не проведен для 0,2-лучевых событий, можно дать лишь приблизительную оценку нижней границы сечения рождения Ξ° -гиперона в Л°Р-взаимодействиях при 16 ГэВ/с: б = (44±137) мкб.

На этом же экспериментальном материале была получена оценка сечения рождения = -гиперонов в 77-Р-взаимодействиях при I6ГэВ/с: (I7,5±2,7) мкб^{/6/}.

7. На рис. 2 приведено угловое распределение вторичных частиц события в системе центра масс ствия. Видно, что в этом событии = -частицы /6/в лр-взаимодействиях, сохраняет направление бариона в системе центра масс первичного взаимодействия.

Авторы благодарны д-ру Д.Р.О.Моррисону за предоставленную возможность работать с фотоснимками, полученными при облучении Л⁻-мезонами при 16 ГэВ/с двухметровой водородной пузырьковой камеры ЦЕРНа.

<u>ЛИТЕРАТУРА</u>

- I. В.М.Карнаухов и др. Сообщение ОИЯИ, 10-6123, Дубна, 1971.
- 2. А.Ф.Лукъянцев и др. Препринт ОИЯИ, Р-1982, Дубна, 1965.
- К.Н.Мухин. Введение в ядерную физику. Атомиздат, Москва, 1965;

А.М.Балдин, В.И.Гольданский, В.М. Максименко, И.Л. Розенталь, Кинематика ядерных реакций. Атомиздат, 1969.

- Particle Data Group, Rev. Mod. Phys., Vol. 48, No. 2, Part II, 1976.
- 5. З.М.Иванченко и др. Препринт ОИЯИ, РІІ-3983, Дубна, 1968.
- 6. E.Balea et al. Preprint JINR, EI-II653, Dubna, 1978.

Рукопись поступила в издательский отдел 13 ирня 1978 года.