СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

P1 - 11615

А.Абдивалиев, К.Бешлиу, А.П.Гаспарян, С.Груиа, А.П. Иерусалимов, Д.К.Копылова, Ф.Которобай, В.И.Мороз, А.В.Никитин, Ю.А.Троян

<u>C346,21</u> A-135

> МЕХАНИЗМ РЕАКЦИИ $np \rightarrow pp \pi^+ \pi^- \pi^- \pi^0$ ПРИ $P_n = (5,10 \pm 0,17)$ ГЭВ/С

P1 - 11615

А.Абдивалиев, К.Бешлиу, А.П.Гаспарян, С.Груиа, А.П. Иерусалимов, Д.К.Копылова, Ф.Которобай, В.И.Мороз, А.В.Никитин, Ю.А.Троян

МЕХАНИЗМ РЕАКЦИИ $np \rightarrow pp \pi^+ \pi^- \pi^- \pi^0$ ПРИ $P_n = (5,10 \pm 0,17)$ ГЭВ/С

ŕ	6	and the state of t
Ĩ	19.5°	
Ş	1.55 ± 1.5	- Burnet

Абдивалиев А. и др.

Механизм реакции $np \rightarrow pp \pi^+ \pi^- \pi^- \pi^\circ$ при $P_n = (5, 10\pm0, 17)$ ГэВ/с

Исследован механизм реакции прэрр $\pi^+\pi^-\pi^-\pi^\circ$ при P_n =(5,10<u>+0</u>,17) ГэВ/с. Показано, что реакция прэрр $\pi^+\pi^-\pi^-\pi^\circ$ в основном описывается с помощью матричного элемента вида

 $M^2 - e^{-B(y_{max} - y_1)} \cdot e^{-B(y_2 - y_{min})} (\beta_1 + \beta_2 R),$

где В =1,41, β₂- доля образования изобары Δ⁺⁺ в реакции, R - резонансный член. Изобара Δ⁺⁺ рождается в значительной степени через периферической механизм.

Рождение ω°-мезона, вероятно, происходит путем π - мезонного обмена в реакции пр → ppω°π⁻.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1978

Abdivaliev A. et al.

P1 - 11615

The $np \rightarrow pp\pi^+\pi^-\pi^-\pi^0$ Reaction Mechanism at $P_n = (5.10\pm0.17) \text{ GeV/c}$

The mechanism of the $np \rightarrow pp \pi^+ \pi^- \pi^- \pi^\circ$ reaction at $P_n = (5.10 \pm 0.17)$ GeV/c was investigated. It was shown that the $np \rightarrow pp \pi^+ \pi^- \pi^- \pi^\circ$ reaction is mainly described with the next type of a matrix element

 $M^2 - e^{-B(y_{max}-y_1)} \cdot e^{-B(y_2-y_{min})} (\beta_1+\beta_2R),$ where B=1,41, β_2 - is the portion of Δ^{++} isobars production in the reaction, R is a resonance term. The Δ^{++} isobars are produced in a significant number of events through a peripherical mechanism. The production of ω° meson in the $np \rightarrow pp\pi^+\pi^-\pi^-\pi^\circ$ reaction probably goes through the π -meson exchange.

The investigation has been performed at the Laboratory of High Energyes, JINR.

Communication of the Joint Institute for Nuclear Research. Dubno 1978

© 1978 Объединенный институт ядерных исследований Дубна

Определение сечения реакции пр - рр $\pi^+\pi^-\pi^-\pi^{\circ}$ (1) и сечений образования резонансов вней при $P_n = 5,1 \ \Gamma \ni B/c$ произведено в наших работах $^{(1,2)'}$. Основные результаты заключаются в том, что примерно в 50% случаев реакция идет через образование изобары Λ^{++} , в 6% случаев в реакции образуется ω° -мезон; вероятность образования изобары Δ^{++} одинакова для систем $p_1\pi^+$ и $p_2\pi^+$, где $y_{p1}^* > y_{p2}^*$ /быстроты протонов в с.ц.м. реакции/.

В настоящей работе мы приведем другие характеристики реакции /1/ и попытаемся сравнить их с возможными механизмами протекания этой реакции.

На рис. 1 представлены угловые распределения вторичных частиц из реакции /1/. Характерные черты распределений: протоны симметричны по углам в с.ц.м. и резко анизотропны, угловое распределение π^+ - мезонов изотропно, в угловом распределении 7 - мезонов имеется небольшой подъем при $\cos \theta_{\pi}^* > 0,6$; угловое распределение π° -мезонов симметрично и анизотропно. На рисунке, как и в дальнейшем, точками отмечено распределение, получаемое с использованием сконструированного нами матричного элемента периферического типа МЭП /см. /3/ /, там же для сравнения нанесены кривые, получаемые из фазового объема /программа "Форс" / . На *рис. 2-5* изображены импульсы, поперечные импульсы и распределения по $x^* = P_{||}^*$ / P_{max}^* и y^* для частиц разного сорта из реакции /1/. Р^{*}_{max} определяется с учетом всех родившихся частиц в реакции /1/. На рис. 6 показаны угловые корреляции между частицами разного сорта. На рис. 7 приведено распределение эффективных масс двух протонов.

Рис.1. Распределения по $\cos \theta^*$ в с.ц.м. реакции для вторичных частиц.

На рис. 8 представлены различные характеристики образовавшихся в реакции /1/ изобар Δ^{++} . В качестве кандидатов в изобары отбирались комбинации протона и π^+ -мезона, эффективная масса которых заключена в пределах 1160 $\leq M_{p\pi} + \leq 1300 M \Im B/c^2$. Из приведенных распределений можно сделать вывод

Из приведенных распределений можно сделать вывод о том, что описание характеристик реакции с использованием МЭП является вполне удовлетворительным.

В работе^{/3/} был приведен вид использованного там матричного элемента:

$$M^{2} \sim e^{-B(y_{max} - y_{1})} \cdot e^{-B(y_{2} - y_{min})} /2/$$

Рис. 2. Импульсные распределения частиц в с.ц.м. реакции.

для описания реакции $np \rightarrow pp \pi^{+}\pi^{-}\pi^{-}$ /3/. Такой же вид матричного элемента использован нами и для описания реакции /1/. Используя средние характеристики этой реакции $\Delta y = y_{max} - y_1 = 0,72; p_{\perp 1}^2 = 0,15$ /средний квадрат поперечного импульса вторичного протона/, $\sqrt{D}y_1 = 0,063$ /корень из дисперсии распределения по y_1^* -быстрого протона в с.ц.м./, можно получить, подобно тому, как это сделано в работе ^{/3/}, значение коэффициента В =1,41. Это значение и использовано в выражении /2/ для матричного элемента при вычислении различных распределений /точки в приведенных выше распределениях/. Видно, что матричный элемент с этим значением

Рис.3. Распределения по Р_ для вторичных частиц.

коэффициента В хорошо аппроксимирует экспериментальные данные. Распределение эффективных масс N_{π} -комбинаций с использованием МЭП получается таким же, как в фазовом объеме. На эксперименте наблюдается

Puc.4. Распределения по $x^* = p_{\parallel}^* / p_{max}^*$.

Рис. 5. Распределения по быстроте.

рождение изобар. Поэтому полный матричный элемент должен содержать резонансный член.

Наиболее яркий эффект в реакции /1/ - резкая анизотропия и симметрия в угловом распределении π° - мезонов в с.ц.м.

Рис. 6. Угловые корреляции между частицами разного сорта.

Рассматривая реакцию /1/ с точки зрения ОРЕ-диаграмм, можно придти к выводу, что, если в угловом распределении по -мезонов будет наблюдаться резкая

Рис.7. Эффективная масса двух протонов.

анизотропия, то эффект такого же порядка должен наблюдаться и в угловых распределениях заряженных мезонов.

нов. Поэтому необходимо рассмотреть эффекты перерассеяния, на важность которых указывалось в работе⁷⁴⁷. Перерассеяния, связанные с диаграммами типа

Рис.8. Распределения по $\cos \theta^*$, P_{\perp} , y^* , p^* , x^* , Δ^{++} изобары.

дадут снова эффекты, примерно одинаковые как для заряженных, так и для нейтрального мезонов. Более того, рассмотрение всех возможных расположений π -мезонов в такой схеме приводит к тому, что π° -мезоны будут иметь тенденцию к вылету назад в общей с.ц.м. /здесь использованы данные работы $^{/5/}$ где изучались различные реакции пр -взаимодействий при проходящих энергиях/.

В схеме с обменом мезонами есть, однако, возможность для перерассеяния, при котором характеристики π° -мезона будут отличаться от характеристик заряжен-

ных мезонов. Речь идет о возможном протекании реакции /1/ в части случаев в два следующих этапа:

$$\begin{array}{ccc} n p \rightarrow p p \pi^{+} \pi^{-} \pi^{-} \\ \rightarrow p p \pi^{+} \pi^{-} \pi^{-} \pi^{\circ} . \end{array} \begin{array}{c} /5 / \\ & \swarrow \end{array}$$

На первом этапе идет реакция $np \rightarrow pp \pi^+ \pi^- \pi^-$, которая изучена нами в работе /3/ и в которой распределения заряженных частиц не сильно отличаются от изотропных. На втором этапе протоны, в значительной степени сохраняющие направление полета первичных нуклонов, взаимодействуют, давая в конце состояние $pp\pi^\circ$.

В реакции pp \rightarrow pp π° при энергиях до 3 $\Gamma_{3B}^{/6/}$ π° -мезоны имеют симметричное и анизотропное распределение, которое может быть сопоставлено с распределением *puc.* 1 данной работы. Эффект перерассеяния может возникать и в случае, если реакция /1/ протекает в два этапа

$$np \rightarrow np \pi^{+}\pi^{-}\pi^{\circ} \rightarrow pp\pi^{+}\pi^{-}\pi^{-}\pi^{\circ} /6/$$

$$\downarrow \rightarrow pp\pi^{-} \rightarrow pp\pi^{+}\pi^{-}\pi^{-}\pi^{\circ} /6/$$

Однако при соответствующих энергиях сечения реакции пр \rightarrow pp π^- меньше сечения реакции pp \rightarrow pp π° /7,8/ и π^- -мезоны в ней вытянуты вперед. Возможно, что этот эффект чувствуется, хотя и слабо, в угловом

распределении π^- - мезонов / рис. 1/. Конечно, все эти соображения носят сугубо качественный характер. Однако совокупность приведенных данных свидетельствует о том, что пренебрегать эффектами перерассеяния, по-видимому, нельзя.

Обсудим теперь возможный механизм рождения ω° -мезона. На *рис.* 9представлены некоторые характеристики рожденного ω° -мезона в общей с.ц.м. реакции /1/. Они получаются путем вычитания характеристик случаев из полосы эффективных масс $\pi^+\pi^-\pi^\circ$ -мезонов /770 $\leq M_{\pi^+\pi^-\pi^\circ} \leq 790/M_{3}B/c_{\pi^2}$ характеристик случаев нз соседних полос справа и слева от полосы, где заключен ω° -мезон. Обращает на себя внимание анизотропное и симметричное угловое распределение ω° -мезона в с.ц.м. Если предположить, что образование ω° -мезона

идет в реакции $np \rightarrow pp \omega^{\circ} \pi^{-}$ /7/ через диаграммы π -мезонного обмена

то можно написать, что сечение образования ω° через процесс /8а/

$$\sigma_{(8a)}^{\omega^{\circ}} \sim \sigma_{\pi^{+} n \rightarrow p \omega^{\circ}} \cdots \sigma_{\pi^{-} p \rightarrow \pi^{-} p} , \qquad /9/$$

а сечения образования ω° через процесс /86/

$$\sigma_{(86)}^{\omega^{\circ}} \stackrel{\sim}{} \sigma_{\pi^{\circ} p \to p \omega^{\circ}} \stackrel{\circ}{} \sigma_{\pi^{-} p \to \pi^{\circ} n} /10/$$

отношение

 $\sigma_{(8a)}^{\omega^{\circ}} / \sigma_{(8b)}^{\omega^{\circ}} \simeq 1,$

т.к. $\sigma_{\pi^+ n \to p \omega} \sigma^{\sigma} \sigma_{\pi^0 p \to p \omega} c^{2}$, что следует из изотопи-

ческих соотношений, а $\sigma_{\pi^- p \to \pi^- p} / \sigma_{\pi^- p \to \pi^0 n} = \frac{1}{2}$ в области масс, характерных для реакции /1/ эффективных масс $\pi^- p$ /около массы 1236 *МэВ/с*²/.

Тогда симметрия углового распределения ω[°]-мезона не удивительна.

выводы

1. Реакция $np \rightarrow pp \pi^+ \pi^- \pi^- \pi^\circ$ в основном может быть описана матричным элементом вида

 $M^2 \sim e^{-B(y_{max} - y_1)} \cdot e^{-B(y_2 - y_{min})} \cdot (\beta_1 + \beta_2 R)$, где B=1,41 и $\beta_1 + \beta_2 = 1$; β_2 - доля образования изобары Δ^{++} в реакции, R - резонансный член;

2. Изобара ∆⁺⁺ рождается в большинстве случаев через периферический механизм.

3. Угловые распределения рожденных частиц не противоречат предположению о перерассеянии вторичных нуклонов с рождением одного *п*-мезона;

4. Рождение ω° -мезона, вероятно, происходит через π -мезонный обмен в реакции $np \rightarrow pp \omega^{\circ} \pi^{-}$.

ЛИТЕРАТУРА

- 1. Абдивалиев А. и др. ОИЯИ, 1-10669, Дубна, 1977.
- 2. Абдивалиев А. и др. ОИЯИ, 1-11138, Дубна, 1977.
- 3. Абдивалиев А. и др. ОИЯИ, РІ-11614, Дубна, 1978.
- 4. Ponomarev L.A. Preprint ITEF-18, M., 1977.
- 5. Гаспарян А.П. и др. ОИЯИ, 1-6211, Дубна, 1972.
- 6. Smith G.A. et al. Phys. Rev., 1961, v. 123, p. 2160.
- 7. Benary O. et al. NN and ND Interactions (Above 0,5 GeV/c)-A Compilation. UCRL-2000NN, 1970.
- 8. Гаспарян А.П. и др. ЯФ, 1970, 12, с. 987.

Рукопись поступила в издательский отдел 30 мая 1978 года.