СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

4727/2-78

P1 - 11614

А.Абдивалиев, К.Бешлиу, А.П.Гаспарян, С.Груиа, А.П.Иерусалимов, Д.К.Копылова, Ф.Которобай, В.И.Мороз, А.В.Никитин, Ю.А.Троян

МЕХАНИЗМ РЕАКЦИИ $np \rightarrow pp \pi^+ \pi^- \pi^-$ ПРИ $P_n = (5, 10 \pm 0, 17)$ ГЭВ/С

P1 - 11614

А.Абдивалиев, К.Бешлиу, А.П.Гаспарян, С.Груиа, А.П.Иерусалимов, Д.К.Копылова, Ф.Которобай, В.И.Мороз, А.В.Никитин, Ю.А.Троян

МЕХАНИЗМ РЕАКЦИИ $np \rightarrow pp \pi^+ \pi^- \pi^-$ ПРИ $P_n = (5,10 \pm 0,17)$ ГЭВ/С

Абдивалиев А. и др.

Механизм реакции $np \rightarrow pp \pi^+ \pi^- \pi^-$ при $P_n = (5, 10\pm0, 17)$ ГэВ/с

Исследован механизм реакции пр., рр $\pi^+\pi^-\pi^-$ при $P_n = (5,10\pm0,17)$ ГэВ/с. Показано, что изобары в реакции пр., рр $\pi^+\pi^-\pi^-$ рождаются, в основном, через периферический механизм. Матричный элемент вида

 $M^2 \sim e^{-2.25(y_{max}-y_1)}e^{-2.25(y_2-y_{min})}$

где y_1 , y_2 , y_{max} , y_{min} - быстроты родившихся протонов и начальных нуклонов, соответственно, описывает достаточно хорошо экспериментальные распределения за исключением эффективных масс Na -комбинаций, которые требуют введения в полный матричный элемент резонансного члена.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1978

Abdivaliev A. et al.

P1 - 11614

P1 - 11614

1

The $np \rightarrow pp\pi^+\pi^-\pi^-$ Reaction Mechanism at $P_n = (5, 10+0, 17)$ GeV/c

The $np \rightarrow pp\pi^{+}\pi^{-}\pi^{-}$ reaction mechanism was investigated at $P_n = (5,10\pm0,17) \text{ GeV/c}$. It is shown that the isobars in the $np \rightarrow pp\pi^{+}\pi^{-}\pi^{-}$ reaction are produced mainly through a peripherical mechanism. The next type of a matrix element

$$M^{2} \sim e^{-2.25(y_{max}-y_{1})} e^{-2.25(y_{2}-y_{min})}$$

where y_1, y_2, y_{max} , y_{min} - velocities of protons produced and those of primary nucleons, respectively, describes rather well experimental distributions, except for the N π -combination effective masses which require the introduction of a resonance member into a complete matrix element,

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1978

В предыдущих наших работах^{/1,2/} определены сечения реакции пр \rightarrow рр $\pi^+\pi^-\pi^-$ /1/ и сечения образования резонансов в ней. Было показано, что реакция /1/ при P_n = /5,10±0,17/ ГэВ/с идет почти в 100% случаев через образование Δ_{33}^{++} -изобары.

В данной работе мы попытаемся проанализировать механизм протекания реакции и сконструировать адэкватный ему матричный элемент. К сожалению, при данной энергии для описания используемой реакции неприменим ни статистический^{/3/} подход из-за малого числа частиц в конце и малости энергии, ни мультипериферический^{/4/} - из-за малого доступного фазового объема. По-видимому, как и в других реакциях при этих энергиях, наиболее близка к эксперименту была бы модель однопионного обмена в современной интерпретацин^{/5/}, но расчеты по ней исследуемой нами реакции очень сложны /а поэтому и более неопределенны/ из-за необходимости учета очень большого количества диаграмм.

Как мы увидим из приводимых ниже распределений, процесс /1/ достаточно периферичен и в то же время многие его характеристики близки к получаемым из фазового объема, поэтому при описании процесса мы старались учесть эти обе его особенности.

На рис. 1 представлены угловые распределения в с.ц.м. различных частиц из реакции /1/. Распределение со значком Δ^{++} – угловое распределение Δ^{++}_{33} , в которое входят комбинации протона и π^+ -мезона, имеющие эффективную массу, заключенную в пределах 1160 $\leq M_{DM} + \leq 1300$ МэВ/с.² На рисунке, как и в дальней-

Рис. 1. Распределения по $\cos \theta^*$ в с.ц.м. вторичных частиц.

шем, сплошная линия - распределение, полученное из фазового объема /программа "Форс"/, точками обозначено распределение, получаемое при использовании сконструированного нами матричного элемента реакцин, учитывающего периферичность процесса /назовем его в дальнейшем МЭП/. Как видно из рисунка, если угловые распределения мезонов более или менее удовлетворительно описываются фазовым объемом /н МЭП/, то угловые распределения нуклонов и Δ_{33}^{++} резко анизотропны н хорошо описываются только МЭП.

Рис. 2. Распределения по Р₁ вторичных частиц.

На рис. 2 представлены распределения по P_{\perp} для частиц разного сорта, на рис. 3 импульсные распределения частиц, на рис. 4 - распределения по $X^* = P_{\parallel}^* / P_{max}^*$,

Рис. 3. Импульсные распределения частиц в с.ц.м.

Рис. 4. Распределения по X* = P_{||}* / P_{max} для вторичных частиц.

7

Рис. 5. сов 0* между вторичными частицами.

где P_{max}^* вычисляется с учетом образованных трех пионов. На *рис.* 5 представлены углы между частицами в с.ц.м. Эффективные массы нуклона и *п*-мезона, вы-

Рис. 6. Распределения по быстротам для всех вторичных частиц.

8

9

Рис. 7. Распределение по эффективной массе двух протонов.

численные с использованием МЭП, совпадают с массами, вычисленными по фазовому объему. На *рис.* 6 представлены распределения по у*, на *рис.* 7 - эффективные массы двух протонов. Из всех распределений следует, что использование матричного элемента периферического типа достаточно хорошо описывает эксперимент.

КОНСТРУКЦИЯ МАТРИЧНОГО ЭЛЕМЕНТА ПЕРИФЕРИЧЕСКОГО ТИПА

Наиболее резко присутствие механизма периферического типа проявляется в характеристиках изобар и нуклонов, как видно из приведенных выше рисунков. Поэтому естественно было в матричный элемент ввести в первую очередь характеристики образовавшихся нуклонов. Кроме того, как видно из рис. 1 работы^{2/} и рис. 6 настоящей работы. нуклоны в основном не перекрываются в пространстве быстрот. Поэтому в первом приближении можно было факторизовать матричный элемент относительно двух нуклонов. Рассмотрим велигде (P_n P₁) - скалярное произвечину $(P_n P_1)(P_p P_2)$, дение четырехимпульса начального протона и "быст-(Р_рР₂) - скалярное произрого" вторичного нуклона, ведение четырехимпульса начального протона и "медленного" вторичного нуклона /определение "быстрого" и "медленного" нуклона дано в работе /2/ оно означает, что $y_{p_1}^* > y_2^*$, где y^* быстроты нуклонов в с.ц.м./.

Выражая, как обычно, энергию и продольный импульс через быстроты $E = m_{\perp} chy$; $P_{\parallel} = m_{\perp} shy$, можно записать

$$(P_n P_1)(P_p P_2) = m^2 m_{\perp 1} m_{\perp 2} ch (y_{max} - y_1) ch (y_2 - y_{min}).$$
 /2/

Здесь $m_{\perp i} = \sqrt{m_i^2 + p_{\perp i}^2}$, у_{max} - быстрота падающего нейтрона, у_{min} - быстрота протона-мишени. Заметим, что написанное выражение - инвариант ввиду аддитивности переменной у.

Формулу /2/ можно переписать в виде:

$$m^{2} m_{\perp 1} m_{\perp 2} ch (y_{max} - y_{1}) ch (y_{2} - y_{min}) =$$

$$= \frac{m^{2} m_{\perp 1} m_{\perp 2}}{4} e^{y_{max} - y_{1}} [1 + e^{-2(y_{max} - y_{1})}] e^{y_{2} - y_{min}} \times$$

$$\times [1 + e^{-2(y_{2} - y_{min})}].$$

$$/3/$$

Для грубого сравнения с экспериментом можно положить

$$m_{\perp 1}[1 + e^{-2(y_{\max} - y_{1})}] = e^{a(y_{\max} - y_{1})}$$

$$m_{\perp 2}[1 + e^{-2(y_{2} - y_{\min})}] = e^{a(y_{2} - y_{\min})}.$$

$$M = 0.$$

$$(4/4)$$

11

Выражение /3/ переписывается тогда в виде

$$\frac{m^2}{4} e^{(1+\alpha)(y_{max} - y_1)} e^{(1+\alpha)(y_2 - y_{min})} . /5$$

Полагая, наконец, 1 + а = В (В > 1). запишем квадрат матричного элемента в виде

 $M^2 - e^{-B(y_{max} - y_1)} e^{-B(y_2 - y_{min})}$. /6/

Значение M^2 тем больше, чем меньше разности $y_{max} - y_1$ и $y_2 - y_{min}$, т.е. чем более периферичны вторичные нуклоны.

Мы специально подробно остановились на математическом представлении скалярных произведений как функций поперечных импульсов и быстрот, чтобы продемонстрировать их роль в сконструированном матричном элементе.

Распределения эффективных масс систем N_{π} . вычисленные по фазовому объему и с использованием МЭП, совпадают. Это является, по-видимому, следствием изотропности угловых распределений π -мезонов и того факта, что использование МЭП слабо меняет импульсные распределения нуклонов. Поэтому происходит лишь поворот векторов импульсов нуклонов в фазовом пространстве относительно изотропных /и почти неизменных по импульсу/ π -мезонов, что не меняет распределения масс N_{π} по сравнению с фазовым пространством. Конечно, это рассуждение относится к данной первичной энергии и данной множественности вторичных частиц.

Экспериментальные распределения эффективных масс содержат эффекты от изобар. Поэтому полный матричный элемент, очевидно, должен содержать резонансный члеи брейт-вигнеровского типа с весом, определенным из анализа масс. В качестве фона в этот матричный элемент должен быть взят МЭП.

Оценку коэффициента В в формуле /6/ можно сделать, исходя из того факта, что равенство /4/ должно быть справедливо и в среднем. Вычисляя /4/ при $\overline{\Delta y} = \overline{y_{max}} - \overline{y_1} =$ = 0,65, $\overline{P_{\perp}^2} = 0,19$ и $\sqrt{D_{y_1}} = 0,5$ /эти значения следуют из эксперимента/, получаем B = 1,94 с точностью порядка 10%. Лучшее описание наибольшего числа экспериментальных распределений в реакции $np \rightarrow pp \pi + \pi - \pi -$ получается с параметром $B \pm 2.25$ /точки на всех приведенных рисунках/. Из сравнения оценки для В и подобранного значения следует, что параметр В определяется, в основном, средними характеристиками реакции.

выводы

1. В реакции $np \rightarrow pp\pi^+\pi^-\pi^-$ при импульсе падающих нейтронов /5,10±0,17/ ГэВ/с рождение изобар происходит, в основном, через периферический механизм.

2. Матричный элемент вида

 $M^2 \sim e^{-2.25(y_{max}-y_1)} e^{-2.25(y_2-y_{min})}$

где y_1 , y_2 , y_{max} и y_{min} - быстроты родившихся протонов и начальных нуклонов, соответственно, описывает достаточно хорошо большое число распределений из указанной реакции за исключением эффективных масс $N\pi$ -комбинаций, которые требуют введения в полный матричный элемент резонансного члена.

ЛИТЕРАТУРА

- 1. Абдивалиев А. и др. ОИЯИ, 1-10669, Дубна, 1977.
- 2. Абдивалиев А. и др. ОИЯИ, 1-10916, Дубна, 1977.
- 3. Фейнберг Е.Л. УФН, 1971, 104, с.539.
- 4. Никитин Ю.П., Розенталь И.Л. Теория множественных процессов. Атомиздат, М., 1976, гл. VI.

5. Ponomarev L.A. Preprint ITEF-18, M., 1977.

Рукопись поступила в издательский отдел 30 мая 1978 года.