ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

5/41-78 P1 - 11326

Ю.А.Батусов, С.А.Бунятов, Л.Д.Визирева, Д.А.Галстян, Г.Р.Гулканян, Н.И.Костанашвили, П.Кюэр, Ж.-П.Массюз, Ф.Х.Мирсалихова, В.М.Сидоров, Х.М.Чернев, Р.А.Эрамжян

ИССЛЕДОВАНИЕ РЕАКЦИИ µ⁻⁶ Li →³H³H _ν В ФОТОЭМУЛЬСИИ. ЗАГРУЖЕННОЙ ЛИТИЕМ-6

.........

2443/9

5-287

11 11 11

P1 - 11326

Ю.А.Батусов, С.А.Бунятов, Л.Д.Визирева, Д.А.Галстян, Г.Р.Гулканян, Н.И.Костанашвили, П.Кюэр, Ж.-П.Массюэ, Ф.Х.Мирсалихова, В.М.Сидоров, Х.М.Чернев, Р.А.Эрамжян

 \sim СЛЕДОВАНИЕ РЕАКЦИИ μ^{-6} Li \rightarrow ³H³H $_{\nu}$

В ФОТОЭМУЛЬСИИ, ЗАГРУЖЕННОЙ ЛИТИЕМ-6

Направлено в ЯФ

⁶ИЯИЯЭ, София, НРБ.

¹ Высший химико-технологический институт, София, НРБ.

² Ереванский физический институт.

³ Тбилисский государственный университет.

⁴ Центр ядерных исследований, Страсбург-Кроненбург, Франция.

⁵ Гаш.ПИ, Ташкент.

Батусов Ю.А. и др.	
	P1 - 11326
Исследование реакции µ [−] °Li→ ³ H ³ H ν в фотоэмульсии загруженной литием-6	[a
В фотоэмульсии, загруженной ядрами ⁶ Li , была иссле ция μ^{-6} Li· ³ H ³ H ν . Получено, что величина относительной и этой реакции равна (9,6 <u>+</u> 3,1)·10 ⁻² . Энергетические и угловь ния вторичных частиц от реакции μ^{-6} Li·· ³ H ³ H ν качестви ются с оценками, выполненными в предположении, что захва ядрами ⁶ Li в этой реакции происходит на малонуклонном ки	едована реак- вероятности не распределе- енно согласу- т µ - мезонов пастере [³ Не].
Работа выполнена в Лабораторни ядерных проблем ОИЯ	и.
Препринт Объединенного института ядерных исследований.	Дубна 1978
Batusov Yu.A. et al.	P1 - 11326
	11 11020
Investigation of μ^{-1} μ^{-1} μ^{-1} Reaction in	11 11020
Investigation of $\mu^{-1}Li^{-1}H^{-1}H^{\nu}$ Reaction in Photoemulsion Loaded with Lithium-6 The $\mu^{-6}Li^{-3}H^{3}H^{\nu}$ reaction has been investigated in emulsion loaded with ⁶ Li nuclei. The value of relative for this reaction was determined to equal $(9,6\pm3,1)\cdot10^{-1}$ and angular distributions of secondary particles from th $\mu^{-6}Li^{-3}H^{3}H^{\nu}$ reaction agree quantitatively with estim tained at the assumption that the capture of μ^{-1} -mesons nuclei in this reaction occurs on a cluster of a few nu	n a photo- probability - ² . Energy ne nates ob- by ⁶ Li scleons [³ He].
Investigation of $\mu^{-1}Li^{-1}H^{-1}H^{\nu}$ Reaction in Photoemulsion Loaded with Lithium-6 The $\mu^{-6}Li^{-3}H^{3}H^{\nu}$ reaction has been investigated in emulsion loaded with ⁶ Li nuclei. The value of relative for this reaction was determined to equal (9,6+3,1) 10 and angular distributions of secondary particles from tr $\mu^{-6}Li^{-3}H^{3}H^{\nu}$ reaction agree quantitatively with estin tained at the assumption that the capture of μ^{-} -mesons nuclei in this reaction occurs on a cluster of a few nu The investigation has been performed at the Labo of Nuclear Problems, JINR.	n a photo- probability -2. Energy ne nates ob- by ⁶ Li scleons [³ He].
Preprint of the Joint Institute for Nuclear Research	n a photo- probability -2. Energy nates ob- by ⁶ Li iccleons [³ He]. pratory

© 1978 Объединенный виститут ядерных исследований Дубна

Изучение различных реакций на ядрах IP - оболочки при захвате μ^- - мезонов '1-3' показало, что индивидуальные свойства этих ядер в сильной степени сказываются на характере процессов их расщепления. В связи с этим в данной области ядер возникает необходимость детального изучения всех возможных каналов реакций μ - захвата.

Аналогичная ситуация имеет место при расщеплении ядер IP - оболочки другими частицами. И хотя такие процессы изучаются в течение длительного времени, они до сих пор не поддаются единому теоретическому описанию.

Особенно информативными могут оказаться экспериментальные данные о процессах на первом стабильном ядре, в котором заполняется IP - оболочка, - ядре ⁶Li. В частности, интересен вопрос о расщеплении ядра ⁶Li на два фрагмента равной массы. Имеющиеся экспериментальные данные по фотоядерному расщеплению ⁶Li противоречивы ^{74,57}. В связи с этим представляется важным получение новой экспериментальной информации об этом канале при захвате μ^{-1} -мезонов.

Среди всех возможных реакций, возникающих после захвата μ^- -мезона ядрами лития-6, детальному кинематическому анализу при регистрации вторичных заряженных частиц могут быть подвергнуты два канала:

$$\mu^{-} + {}^{6}\text{Li} \rightarrow {}^{6}\text{He} + \nu, \qquad /1/$$

 $\mu^{-} + {}^{6}Li + {}^{3}H - {}^{3}H - \nu$, /2/

3

Расчетам перехода ядра ⁶ Li в основное состояние ⁶Не при μ -захвате по реакции /1/ в рамках различных моделей посвящено большое число теоретических работ. Экспериментальная величина скорости этого перехода была измерена в работе Дойча и др.⁶ и равна /1600⁺³²⁰/ c⁻¹, что удовлетворительно согласуется с результатами многих теоретических расчетов /см., например,⁷/.

Исследованням процессов захвата μ -мезонов ядрами ⁶ Li по реакции /2/ посвящены вычисления, приведенные в работах /8-10/. В первых двух ^{/8,9/} реакция μ ⁶ Li \rightarrow ³H ³H ν анализируется на основе так называемых треугольных диаграмм. Этот расчет был предпринят в связи с предполагаемым экспериментом по измерению массы мюонного нейтрино^{/9/}. В результате такого расчета получено энергетическое распределение вторичных тритонов и скорость перехода по реакции /2/, которая оказалась равной 141 с -1.

В другой работе $^{/10/}$ на основе концепции о резонансном механизме поглощения мюонов проведен анализ различных каналов распада состояний гигантского резонанса ядра 6 Li. Было найдено, что структурные особенности ряда состояний, формирующих резонанс, приводят к распаду по каналу μ^{-6} Li \rightarrow^{3} H 3 H ν с вероятностью около 10% на акт захвата. Спектр ядер трития, рассчитанный в рамках обонх подходов, оказался локализованным в одной и той же энергетической области. Однако в первом случае он гладкий, тогда как на основе резонансного механизма предсказывается наличие у спектра структуры $^{/8-10/}$. Таким образом, расчеты процесса /2/, выполненные в рамках двух различных моделей, отличаются как по скорости перехода процесса /в 3-4 раза/, так и по виду спектра вторичных тритонов.

В настоящее время отсутствуют экспериментальные данные по исследованию реакции $/2/\mu^{-6}$ Li $\rightarrow {}^{3}$ H 3 H ν , сравнение с которыми позволило бы отдать предпочтение одной из двух этих моделей.

Целью данной работы является экспериментальное изучение реакции /2/ в фотоэмульсии, загруженной ядрами ⁶Li. Постановка опыта, отбор событий и оценка вероятностей реакции μ^{-6} Li \rightarrow ³ H³H ν

Из фотоэмульснонных слоев "Ильфорд К-5" размером 5 x 5 cm^2 и толщиной 6ОО *мкм*, наполненных ядрами ⁶Li в количестве 32 *мг/см*³, были собраны 5 фотоэмульсионных камер объемом 5 x 5 x 1,7 cm^3 . Для проведения фоновых измерений в каждой камере два первых и два последних слоя брались из стандартной незагруженной эмульсии того же полива, что и вся камера. Загруженные фотоэмульсионные слои были изготовлены в Центре ядерных исследований в Страсбурге-Кроненбурге /Франция/, там же на ускорителях Ван-де-Граафа для этих слоев была проведена корректировка соотношений пробег-энергия ⁽¹¹⁾.

Эмульсионные камеры облучались μ^- -мезонами с энергией 60 *МэВ* в низкофоновой лаборатории на μ -мезонном тракте синхроциклотрона ОИЯИ. Плотность облучения составляла 3 10⁵ *мезон/см*². Мезоны тормозились медным фильтром толщиной 13 г/см² и останавливались в середине эмульсионных камер. Примесь π^- -мезонов в первичном пучке была определена нами в работе '12' и составляет - 0,4%. С целью фоновых измерений в том же пучке облучались две камеры размером 10 х х 10 х 5,4 см³, составленные из электроночувствительных слоев эмульсии типа НИКФИ-БР толщиной 600 мкм.

Проявленные фотоэмульсионные слои просматривались под микроскопом с увеличением 225х, и регистрировались одно- и двухлучевые звезды от захвата μ^- -мезонов ядрами в фотоэмульсии / σ_{μ} -звезды/. Всего в Дубне, Софин, Тбилиси и Ереване было зарегистрировано 33 24О таких σ_{μ} -звезд. Для однозначной идентификации однолучевых σ_{μ} -звезд необходимо вводить ограничение на длину следа, чтобы исключить ложные события, соответствующие рассеянию μ^- -мезона перед остановкой. Так как эта длина в фотоэмульсии составляет ≥ 10 мкм, что намного больше пробега ⁶Не в реакции μ^{-6} Li · ⁶He ν /1/, то не представляется возможным проводить детальный анализ реакции /1/ фотоэмульсионным методом. Для двухлучевых σ_{μ} -звезд такого жесткого ограничения на длину следов нет. В этом случае лучом считался след, имеющий определенное направление и длину > 2 мкм.

Всего при просмотре фотоэмульсионных слоев, заполненных ядрами ⁶Li, и в фоновых камерах было зарегистрировано 7 473 двухлучевых σ_{μ} - звезд; 4 498 σ_{μ} звезд /3 O42 в камерах с ⁶Li и 1 456 в стандартной эмульсии/ было вновь просмотрено на микроскопе при большом /135Ox/ увеличении, и для событий без видимого ядра отдачи и электронов в центре звезды были измерены пробеги вторичных заряженных частици угол между ними.

U Z G O O X Рис. 1. Распределение числа событий, удовлетворяющих кинематическим критериям реакции /2/, в зависимости от величины X² Пунктир - теоретическое X² - распределение.

Для выделения реакции $\mu^{-6}\text{Li} \rightarrow {}^{3}\text{H}^{3}\text{H} \nu/2/$ измеренные события были проанализированы на ЭВМ при помощи программы кинематического анализа ядерных реакций в фотоэмульсии $^{/13/}$. Полученное в результате расчета распределение событий по величиие χ^{2} представлено на *рис.* 1. Там же приведено теоретическое χ^{2} -распределение для одной степени свободы. Видно, что при $\chi^{2} > 2$ распределение становится равномерным. Поэтому к событиям, которые могут соответствовать реакции /2/, относились случаи с $\chi^{2} \leq 2$.

Дальнейший отбор событий производится по величине квадрата недостающей массы реакции $\mu^{-6} \text{Li} \rightarrow ^{3}\text{H}^{3}\text{H}_{\nu}$. Анализ распределения событий в координатах квадрат недостающей массы - величина χ^{2} показал, что лучшее соотношение числа решений для событий реакции /2/ в слоях, заполненных⁶ Li , и числа решений для стандартной эмульсии получается в области недостающих масс $\leq |1000| M \ni B^{2}$. Такому критерию удовлетворяло 2O3 события /что соответствует /6,7±O,5/% от числа измеренных σ_{μ} -звезд/ в камерах, заполненных ⁶ Li , и 67 событий / 4,6±O,6 %/ - в фоновых камерах.

Поскольку количество ядер ⁶Li в загруженной фотоэмульсии невелико и составляет всего 4,2% от числа всех остальных ядер, входящих в состав фотоэмульсии /Ag, Br, S, O, N, C/, то по разности отнормированной доли случаев реакции /2/, зарегистрированных в заполненной и стандартной эмульсиях, можно оценить вклад событий реакции на ядрах ⁶Li. Мы получили, что такая разность /эффект-фон/ равна /2,1±O,8/%. Полученная оценка указывает на то, что примененный способ выделения событий реакции μ^{-6} Li · ³H³H ν /2/ является результативным.

Для оценки величины относительной вероятности реакции /2/ мы воспользовались энергетическим распределением нейтрино, полученным для выделенных событий в загруженной и стандартной эмульсиях.

На *рис. 2а* сплошной гистограммой представлен спектр нейтрино для событий, полученных в эмульсии, загруженной ядрами ⁶Li; пунктирной гистограммой спектр для фоновых случаев, нормированный к одинаковому числу σ_{μ} -звезд в загруженной и стандартной эмульсиях. Разность от вычитания этих двух нормированных гистограмм приведена на *рис. 26.* При вычислении величины относительной вероятности к событиям реакции на ⁶Li были отнесены /6O±14/ случаев, расположенных в интервале энергии нейтрино $E_{\nu} = /86 \div 87,6/$ *МэВ* /*рис. 26*/. В дальнейшем события с $E_{\nu} > 86$ *МэВ* использовались для построения разностных угловых и энергетических распределений. Используя число выделенных случаев реакции /2/, полное число остановок μ^- -мезонов в просмотренном объеме эмульсии - /1,92±0,15/·10⁶, относительную частоту атомного захвата μ^- -мезона и время его жизни в ядре ⁶Li , а также эффективность регистрации событий реакции /2//², получаем, что относительная вероятность реакции /2/ равна $W(\mu^{-6}Li \rightarrow {}^3H^3H_{\nu}) = /9,7\pm3,1/10^{-2}$.

Найденное значение относительной вероятности в несколько раз больше теоретических оценок, выполненных на основе расчета треугольных диаграмм $^{/8,9/}$, ихорошо согласуется с расчетами по резонансной модели поглощения μ^- -мезонов $^{/10/}$.

Механизм реакции μ^{-6} Li \rightarrow^3 H 3 H $_{\nu}$

На *рис. 2-4* приведены полученные вопыте энергетические и угловые распределения вторичных частиц от реакции /2/.

Из рис. 26 видно, что спектр нейтрино от реакции $\mu^{-6} \text{Li} \rightarrow {}^{3}\text{H}^{3}\text{H}_{\nu}$ сгруппирован в узком интервале энергии /86-87,6/ МэВ.

Зная спектр нейтрино, легко рассчитать энергию возбуждения ядерной системы. Из анализа экспериментальных данных получено /см. *рис. 36*/, что уровень промежуточного ядра ⁶He * отстоит от основного состояния ядра ⁶He на /14,0±0,8/ *МэВ.* Эти экспериментальные величины находятся в хорошем согласии с данными Шина и др.^{/5/}.

Так как спектр нейтрино сгруппирован в узком интервале энергии, это может означать, что оно вылетает в результате промежуточного двухчастичного процесса. Такой процесс предполагается как при резонансном механизме захвата μ^- -мезона⁽¹⁵⁾, так и при прямом захвате его частью ядра, например кластером [³ He]⁽⁵⁾.

Экспериментальный спектр тритонов, представленный на *рис. За*, не согласуется ни со спектром, рассчитанным на основе треугольной диаграммы^{/8,9/}, ни с вычислениями, выполненными по резонансной модели^{/10/}

Противоречие экспериментальных данных расчетам по резонансной модели может означать, что вклад прямых процессов, которыми обычно пренебрегают в таких расчетах, не мал.

Схематически прямой процесс захвата μ^- -мезона ядром ⁶Li с образованием двух ядер трития представлен на рис. 5. Известно, что при захвате μ -мезона ядрами ³ Не вторичное ядро ³Н имеет кинетическую энергию, равную 1,9 МэВ/см., например, /16//. Спектр тритонов. полученный в нашем эксперименте / рис. За/, имеет два максимума: в области 2 МэВ и О,4 МэВ. Кинематический расчет энергии нейтрино в предположении захвата μ - мезонов кластером [³He] в ядре ⁶Li дает величину порядка 87 МэВ. что также согласуется с найденными в нашем опыте энергетическими величинами / рис. 26/. Распределение углов между вторичными ядрами трития и нейтрино / рис. 46/, имеющее ник в области углов 180°, и изотропный пьедестал тоже поддерживают предполагаемую схему кластерного захвата и -мезона. В этом случае максимум под углом 180° обусловлен верхней вершиной диаграммы / рис. 5/, а углы между тритоном отдачи и нейтрино в нижней вершине должны быть распределены изотропно.

Предполагая, что процесс захвата μ^- -мезона ядром⁶Li происходит по схеме *рис.* 5, а импульсное распределение кластера[³ He] совпадает с экспериментально определенным импульсным распределением ядер трития из первого максимума *рис.* За, можно промоделировать этот процесс. Будем считать, что характеристики процесса описываются только фазовым объемом.

Полученные в таком приближении результаты моделирования распределений приведены на *рис. 2-4*. Видно, что они качественно согласуются с экспериментальными данными.

Заключение

1. Получена величина относительной вероятности реакции /2/:

 $W(\mu^{-6}Li \rightarrow {}^{3}H^{3}H\nu) = (9.7 \pm 3.1) \cdot 10^{-2}.$

Найденное значение относительной вероятности $W(\mu^{-6} \text{Li} \rightarrow ^3 \text{H}^3 \text{H} \nu)$ в несколько раз больше теоретических оценок, выполненных на основе треугольных диаграмм $^{/8,9/}$, хотя и согласуется с расчетами по резонансной модели поглощения μ^{-} -мезонов ядрами.

2. Энергетические и угловые распределения вторичных частиц от реакции /2/ качественно согласуются с оценками, выполненными в предположении, что захват μ^- -мезонов ядрами ⁶Li в этой реакции происходит на малонуклонном кластере [³He].

12

Для выяснения роли кластерного механизма захвата μ^- - мезонов в реакции μ^{-6} Li + 3 H 3 H ν необходим дальнейший строгий теоретический анализ.

Литература

- 1. Батусов Ю.А. и др. ЯФ, 1971, 14, с. 1206.
- 2. Батусов Ю.А. и др. ЯФ, 1975, 22, с. 320.

- 3. Батусов Ю.А., Эрамжян Р.А. ЭЧАЯ, 1977, 8, с. 229. 4. Murakami A. Jour. Phys.Soc.Japan, 1970, 28, р. 1. 5. Shin Y.M., Scopik D.M., Marphy J.J. Phys.Lett., 1975, 55B, p. 297.
- 6. Deutsch J.P. e.a. Phys.Lett., 1968, 26B, p. 315. 7. Commaratu J.B., Donnelly T.W. Nucl.Phys., 1976, 267A, p. 365.
- 8. Wienke B.R., Meyer S.L. Phys.Rev., 1971, C3, p.2179.
- 9. Wienke B.R., Meyer S.L. Phys. Rev., 1974, C9, p.943.
- 10. Вартанян В.А., Эрамжян Р.А. В кн.: Вопросы атомной науки и техники. Харьков, Труды ХФТИ, 1973. 73-9, c. 25.
- 11. Батусов Ю.А. и др. ЯФ, 1977, 26, с. 249.
- 12. Батусов Ю.А. и др. ЯФ, 1973, 18, с. 962.
- 13. Агабабян Н.М. и др. ОИЯИ, 10-5891, Дубна, 1971.
- 14. Eckhause M., Siegel R.T. Nucl. Phys., 1966, 81, p. 575. 15. Balashov V.V., Eramjan R.A. Atomic Energy Rev., 1967, 5, p. 3.
- 16. Займидорога О.А. и др. ЖЭТФ, 1961, 41, с. 1805: 1962, 43, c. 355; 1963, 44, c. 389.

Рукопись поступила в издательский огдел 14 февраля 1978 года.