ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

2444/2-78

1010 IS 11 11

5/11-73 P1 - 11325

Н.С.Ангелов, С.Бацкович, В.Г.Гришин, Ю.Надь, Т.Канарек

множественность вторичных частиц
в зависимости от числа соударений *п*[−]-мезонов с нуклонами ядра углерода
при р = 40 ГэВ/с

P1 - 11325

Н.С.Ангелов, С.Бацкович, В.Г.Гришин, Ю.Надь, Т.Канарек

МНОЖЕСТВЕННОСТЬ ВТОРИЧНЫХ ЧАСТИЦ В ЗАВИСИМОСТИ ОТ ЧИСЛА СОУДАРЕНИЙ *π*⁻-МЕЗОНОВ С НУКЛОНАМИ ЯДРА УГЛЕРОДА ПРИ р = 40 ГэВ/с

Направлено в ЯФ

Оба долженный институ AN ECONA H 19 G. H. HELLENA

*Институт физики, Белград.

Ангелов Н.С. и др.

P1 - 11325

Множественность вторичных частиц в зависимости от числа соударений т - мезонов с нуклонами ядра углерода при **р = 40** ГэВ/с

Изучены множественности вторичных заряженных частиц, образованных при неупругих соударениях π^- -мезонов с ν протонами ядра углерода при p = 40 ГэВ/с ($\nu = 1+5$). Показано, что зависимость средних множественностей частиц от ν совпадает, в пределах ошибок, с зависимость б π^- p -взаимодействиях от энергии налетающего пиона в интервале 40-200 ГэВ. Для многонуклонных взаимодействий выполняется скейлинг по множественности (К.N.O) и зависимость Врублевского.

Работа выполнена в Лаборатория высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1978

Angelov N.S. et al.

P1 - 11325

The Multiplicity of Secondary Charged Particles in π -1²C Interactions with ν -Protons of Carbon Nucleus at p = 40 GeV/c

The multiplicity of secondary charged particles in π^{-12} C interactions with ν -protons of carbon nucleus at pc = 40 GeV/c is presented ($\nu = 1 \div 5$). It is shown that the dependence of the average values of particle multiplicities on ν approximately equals the dependence <n> on initial pion energy in π^-p -interactions in the range $40 \div 200$ GeV. KNO scaling and Wroblewski empirical law for interactions with several nucleons of 12 C nucleus are observed.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research.

Dubna 1978

С 1978 Объединенный институт ядерных исследований Дубна

§1. ВВЕДЕНИЕ

В этой работе приводятся результаты изучения множественности вторичных заряженных частиц, образованных во взаимодействиях π^- -мезонов с p = 40 $\Gamma_{\mathcal{F}}B/c$ с ν -протонами ядра углерода $/\nu \ge 1,2,3,4,5/$. Данные получены с помощью 2-метровой пропановой пузырьковой камеры, облученной π^- -мезонами с p = 40 $\Gamma_{\mathcal{F}}B/c$ на серпуховском ускорителе $^{/1,2/}$ Статистика составляет 5500 π^{-12} С-взаимодействий. Отметим некоторые особенности методики эксперимента. Протоны и пионы визуально идентифицировались по ионизации при p < <700 $M_{\mathcal{F}}B/c$. Все положительно заряженные частицы, кроме идентифицированных протонов, считаются π^+ мезонами, отрицательные - π^- -мезонами.

Взаимодействия типа $\pi^-(\nu p)$ выделялись по величине $Q = n_+ - n_-$, которая равна разности зарядов положительных и отрицательных пионов в данном событии*. Таким образом, если Q=1, то число протонов ν , которое участвовало во взаимодействии, $\nu \ge 2$; если Q=2, то $\nu\ge 3$, то есть $\nu > Q+1$. Причем эти взаимодействия были такого типа, когда протоны после соударения имели $p \ge 700$ *МэВ/с* или передали свой заряд

^{*}Идентифицированные протоны исключались из рассмотрения при определении величины Q из-за неоднозначной интерпретации их образования. Поэтому величина Q_π -1,0 для π^- р -взаимодействий и равна -1 или -2 для π^- п-соударений. Здесь мы будем рассматривать только Q>1.

пионам. Таким образом, мы выделяем существенно неупругие взаимодействия пионов с протонами ($|t| \ge \ge 0,5 \ \Gamma \Rightarrow B^2/c^2/$. Отметим также, что взаимодействия, в которых протон имеет $p \le 700 \ M \Rightarrow B/c$, составляют 0,2 от всех $\pi^- p$ -взаимодействий в широком интервале энергий /4-40 $\Gamma \Rightarrow B/$. Поэтому в первом приближении мы можем положить $\nu(p) = Q + 1$. Распределение событий по Q приведено в таблице. Как видно из этих данных, вероятность взаимодействия с увеличением Q на единицу уменьшается примерно в три раза в интервале значений Q от O до 5. Это уменьшение связано с увеличением числа протонов, участвующих в таких взаимодействиях, в которых $\Delta Q = +1$. Предположим, что вероятность взаимодействия при включении дополнительного нейтрона также уменьшается в три раза. Отсюда

Таблица

Зависимость	множественности	вторичных	заряженных
частиц от Q	в <i>п⁻¹²С-взаимодей</i>	ствиях при р	$a = \overline{40} \Gamma \mathcal{B}/c^*$

Q	%	<n<sub>t></n<sub>	<n_></n_>	\mathbb{D}_{\pm}
-4	0,03 <u>+</u> 0,03			
-3	0,37<u>+</u>0, 08	7,86 <u>+</u> 0,87	5,43 <u>+</u> 0,43	3,79 <u>+</u> 0,6I
-2	4,19<u>+</u>0,2 8	5,64 <u>+</u> 0,20	3,82 <u>+</u> 0,10	3,08 <u>+</u> 0,14
-I	35, 74 <u>+</u> 0,82	5,2I <u>+</u> 0,06	3,II<u>+</u>0,0 3	2,86 <u>+</u> 0,05
0	39,56<u>+</u>0, 86	6,I3 <u>+</u> 0,07	3,07 <u>+</u> 0,04	3,09<u>+</u>0,0 5
I	I3,46<u>+</u>0, 50	8,08 <u>+</u> 0,I3	3,54 <u>+</u> 0,06	3,38 <u>+</u> 0,09
2	4,54 <u>+</u> 0,29	9,85 <u>+</u> 0,25	3,92 <u>+</u> 0,I2	3,84 <u>+</u> 0,17
З	I,58<u>+</u>0, 17	II,02 <u>+</u> 0,43	4,0I <u>+</u> 0,2I	3,91 <u>+</u> 0,30
4	0,43 <u>+</u> 0,09	12,43 <u>+</u> 0,81	4,2I <u>+</u> 0,40	3,81 <u>+</u> 0,57
5	0,I0 <u>+</u> 0,04			

*Идентифицированные протоны не включались в <n -> и D_+.

мы можем оценить истинное число нуклонов, участвующих во взаимодействиях при данном Q: $\nu(n,p) = Q+1+1/3$ или $\nu(n,p) = \nu(p)+1/3$. Таким образом, $\nu(n,p)=1,15\nu(p)$ для $\nu(p)=2,\nu(n,p)=1,1\nu(p)$ для $\nu(p)=3$ и т.д. Поэтому, сравнивая характеристики по множественности при различных значениях Q, мы полагали $\nu(p) \approx \nu(n,p) = Q+1$. В результате, изучая только взаимодействия пионов с ядрами углерода, мы получили данные при $\nu = 2 \div 5$, которые обычно получают при исследовании соударений пионов с удрами от углерода до урана $^{/3/}$.

§2. ЗАВИСИМОСТЬ СРЕДНИХ МНОЖЕСТВЕННОСТЕЙ ВТОРИЧНЫХ ЧАСТИЦ ОТ ν(p)

В паблице приведены значения $<n_{\pm} > u < n_{-} > для$ различных значений ν (p)=Q+1. Чтобы сравнить эти данные с π^{-} р -взаимодействиями, необходимо из значений $< n_{\pm} >$ вычесть "избыточный" заряд начальной системы протонов, т.е. Q. На *рис. 1* приведены значения

5

 $<n_{+}>-Q$ и $<n_{-}>$ в зависимости от полной энергии в системе центра масс $\pi^{-}(\nu p)$ -взаимодействий: $\sqrt{s} =$

 $=\sqrt{(\nu m_p)^2 + 2\nu m_p E_0}$. Здесь же даны значения $\langle n_{\perp} \rangle u \langle n_{\perp} \rangle$ для $\pi^- p$ - взаимодействий при различных значениях \sqrt{s} . Как видно из рисунка, значения $\langle n_i \rangle = \pi^-(\nu p)$ и $\pi^- p$ - взаимодействиях одинаковы в пределах ошибок при одних и тех же значениях \sqrt{s} . Однако отсюда не следует, что пионы обязательно взаимодействуют с трубкой из ν - протонов $^{/4/}$. Действительно, последовательные взаимодействия пионов с протонами также дают увеличение множественности с ростом ν , которое согласуется с экспериментальным $^{/2/}$. На *рис.* 2 приводятся зависимости $R_{=}\langle n_i \rangle_{\pi} (\nu p)$ $/\langle n_i \rangle_{\pi p}$ от ν , с учетом ($\langle n_{\pm} \rangle$) и без учета ($\langle n_{-} \rangle$) "избыточного" заряда Q. Они удовлетворительно описываются функцией $R_{=\nu}a$, где a=0.25/сплошные кривые/ $^{/4/}$.

Puc. 2

§3. ЗАВИСИМОСТЬ ДИСПЕРСИИ ОТ ν и К.N.O.-СКЕЙЛИНГ

Как известно, данные по зависимости $D = \sqrt{n_i^2} - (n_i)^2$ от $(n_i) > x$ орошо описываются формулой Врублевского - $D = A < n_i > + B^{/5/}$. Сначала это было установлено для адронадронных взаимодействий. В настоящее время закономерность наблюдена в адрон-ядерных соударениях и в столкновениях ядер с ядрами (6). На *рис.* 3 приведены наши данные для различных значений ν . Здесь же пунктиром показана зависимость Врублевского для $\pi^- p$ -взаимодействий / A = 0,56 и B = -0,58/. Как видно из рисунка, эта зависимость удовлетворительно описывает и $\pi^- (\nu p)$ взаимодействия.

На *рис.* 4 данные по <n_i> представлены в переменных К.N.O. скейлинга ^{/7/}:

$$(\langle \mathbf{n}_{\pm} \rangle - \mathbf{Q}) \frac{\sigma_{\mathbf{n}\pm}(\nu \mathbf{p})}{\sigma_{\mathbf{i}\mathbf{n}}(\nu \mathbf{p})} = \mathbf{f}(\frac{\mathbf{n}_{\pm} - \mathbf{Q}}{\langle \mathbf{n}_{\pm} \rangle - \mathbf{Q}}).$$

6

Здесь же приведены данные для π^{-} р -взаимодействий при р = 40 $\Gamma \mathcal{B} / c$. Как видно из рисунка, имеется скейлинг по множественности и для многонуклонных взаимодействий.

Puc. 4

Таким образом, множественности вторичных частиц, образованных в $\pi^-(\nu p)$ -взаимодействиях при p = = 40 ГэВ/с, подчиняются общим закономерностям, наблюденным как в пион-нуклонных соударениях, так и при изучении взаимодействий адронов с ядрами. Возможность выделения неупругих соударений с ν -протонами при взаимодействии пионов с ядрами, имеющими определенный атомный вес, позволяет изучать характеристики многонуклонных взаимодействий в зависимости от числа нуклонов, участвующих в этих взаимодействиях. Данные по множественности $\pi^{-}(\nu p)$ -соударений не являются критичными по отношению к двум альтернативным механизмам взаимодействия: коллективному и последовательному. Поэтому необходимо исследовать импульсные и угловые характеристики вторичных частиц для выяснения роли коллективных взаимодействий.

Мы признательны участникам сотрудничества по исследованию множественных процессов в пион-нуклонных взаимодействиях при $p = 40 \Gamma \beta B/c$ за помощь в работе и полезные обсуждения.

ЛИТЕРАТУРА

- 1. Абдурахимов А.У. и др. ОИЯИ, Р1-6326, Дубна, 1972.
- 2. Ангелов Н.С. и др. ОИЯИ, Р1-10324, Дубна, 1976; ЯФ, 1977, 26, с.811.
- 3. Busza W. e.a. Phys.Rev.Lett., 1975, v.34, p.836. Halliwell C. e.a. Phys.Rev.Lett., 1977, v.39, p.1499.
- 4. Berlad G. e.a. Phys. Rev., 1976, D13, p.161.
- 5. Wroblewski A. Proceedings of VIII International Symposium on Multiparticle Dynamics, A-1, Kaysersberg, 1977.
- 6. Аникина М.Х. и др. ОИЯИ, Р1-10590, Дубна, 1977.
- 7. Koba Z., Nielsen H.B., Olesen P. Nucl. Phys., 1972, B40, p.633.

Рукопись поступила в издательский отдел 14 февраля 1978 года.