ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

15/1-78 P1 - 11293

A-646 2133/2-78

tants If Hill Canter

ИЗУЧЕНИЕ ИНКЛЮЗИВНЫХ СПЕКТРОВ ВТОРИЧНЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ, ОБРАЗОВАННЫХ В л^{- 12}С- ВЗАИМОДЕЙСТВИЯХ ПРИ 40 ГэВ/с

P1 - 11293

ИЗУЧЕНИЕ ИНКЛЮЗИВНЫХ СПЕКТРОВ ВТОРИЧНЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ, ОБРАЗОВАННЫХ В п^{- 12}С- ВЗАИМОДЕЙСТВИЯХ ПРИ 40 ГэВ/с

Сотрудничество: Бухарест, Дубна, София, Ташкент.

Направлено в ЯФ

OGTAL CHERTRACE BUNGTERSVT LED CELLING 18 E. **GHEIMOTEKA**

Ангелов Н. и др.

Изучение инклюзивных спектров вторичных заряженных частиц, образованных в π^{-12} С- взаимодействиях при 40 ГэВ/с

Изучены структурные функции (Е $\frac{d^3\sigma}{dp^3}$) для π^{\pm} -мезонов, образованных в π^{-12} С-взаимодействиях при Р $_{\pi^{-}}$ = 40 ГэВ/с в зависимости от поперечного импульса (Р $_{\perp}$). Для Р $_{\perp} \ge 0,15$ ГэВ/с распределения имеют экспоненциальный вид, причем параметры наклона для π^{\pm} -мезонов, испущенных в лабораторной системе координат вперед, близки друг к другу и мало отличаются от параметров наклона во взаимодействиях рри р-ядро в широком диапазоне первичных энергий. Отдельно изучены структурные функции для лидирующих частиц, исследована А-зависимость отношения инвариантных сечений для π^{-12} С - и π^- р-взаимодействий в различных интервалах поперечных импульсов π^{\pm} -мезонов.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1978

Angelov N. et al.

P1 - 11293

A Study of Inclusive Spectra of Secondary Charged Particles Produced in π^{-12} C -Interactions at 40 GeV/c

The structure functions $(E \frac{d^3\sigma}{dp^3})$ for π^{\pm} -mesons produced in $\pi^{-12}C$ interactions at $P_{\pi^{-}} = 40^{\circ} \text{ GeV/c}$ have been studied as a function of transverse momentum (P_{\perp}) . For $P_{\perp} \ge 0.15$ GeV/c the distributions have an exponential form, the slope parameters for π^{\pm} -mesons emitted forward (in lab. c.s.) being near to each other and differing slightly from those for pp - and p nuclear interactions in a wide range of primary energies. Separately, the structure functions for leading particles have been studied, the A dependence of invariant cross section ratio for $\pi^{-12}C$ and $\pi^{-}p$ interactions has been investigated in various ranges of π^{\pm} meson transverse momenta.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

© 1978 Объединенный институт ядерных исследований Дубна

§1. ВВЕДЕНИЕ

Настоящая работа является продолжением цикла исследований π^{-12} С-взаимодействий, выполненных в рамках Сотрудничества по обработке снимков с двухметровой пропановой пузырьковой камеры ОИЯИ, облученной π^{-} -мезонами с импульсом 4О ГэВ/с на ускорителе ИФВЭ. В этих работах подробно изучены вопросы, связанные с множественностью вторичных заряженных частиц и у-квантов /1-4/; корреляции между вторичными заряженными частицами, между у-квантами /4,5/; инклюзивные распределения протонов, странных частиц и у-квантов /6-8/; когерентные взаимодействия /9/. Получены предварительные результаты по инклюзивным спектрам π^{\pm} -мезонов /3/, исследованы свойства лидирующих частиц /10/.

В данной работе на основе анализа – 6000 π^{-12} Свзаимодействий изучались инклюзивные реакции типа:

 $\pi^- + 1^2 C \rightarrow \pi^{\pm} + \dots + /1/$

Методические вопросы, связанные с отбором и обработкой событий, изложены в наших работах /1,3/.

§2. ИНКЛЮЗИВНЫЕ СПЕКТРЫ

Исследовано поведение структурной функции $E \frac{d^3 \sigma}{dp^3}$ для π^{\pm} -мезонов, образовавшихся в π^{-12} С-взаимо-

3

действиях, в зависимости от поперечного импульса (P_{\perp}) , и проведено сравиение с результатами для $\pi^- p$ - взаимодействий при той же энергии первичного π^- - мезона.

На рис. І показаны распределения для всех вторичных π^{\pm} -мезонов, т.е. для π^{\pm} -мезонов, испущенных под всеми углами в лабораторной системе координат /л.с.к./. В интервале $P_{\perp} \ge 0,150$ ГэВ/с распределения имеют экспоненциальный вид как для π^+ , так и для π^- -мезонов, причем для π^- -мезонов структурная функция падает с ростом P_{\perp} быстрее, чем для π^+ -мезонов.

Рис. 1. Структурные функции для π^{\pm} - мезонов, испущенных под всеми углами в л.с.к.

То же самое наблюдается и для $\pi^- p$ -взаимодействий. Отметим, что в интервале углов испускания О°-- 12° в л.с.к. разница в поведении спектров π^+ - и π^- -мезонов уменьшается, причем инвариантные сечения для π^+ -мезонов начинают падать с ростом P_{\perp} быстрее, чем для π^- -мезонов / рис. 2/.

^{*}Угол 12° в л.с.к. соответствует 90° в системе центра инерции п-мезон-нуклон.

Приведенные на рис. 1 и 2 распределения были аппроксимированы функцией

$$E \frac{d^{3}\sigma}{dn^{3}} = const e^{-BP_{\perp}} /2/$$

в области P₁ > 0,150 ГэВ/с. Значения свободного параметра В приведены в табл. 1. В эту таблицу дополнительно включены результаты аппроксимации функцией /2/ распределений для π^{\pm} - мезонов, испущенных в л.с.к. под углами от 3° до 12° , а также данные, полученные в работах^{/11-13/} при изучении взаимодействий pp - и p ядоо в широком диапазоне первичных энергий. Как видно из таблицы, наклоны экспонент для π^+ - и π^- -мезонов близки друг к другу /за исключением отмеченного выше случая испускания π^{\pm} -мезонов под всеми углами/ и мало чувствительны к природе и энергии первичной частицы, а также к массе ядра мишени.

Более подробно была изучена область малых поперечных импульсов / Р₁ < 0,150 ГэВ/с/. Распределения

 $E\frac{d^3\sigma}{dp^3} = f(P_{\perp})$ показаны на *рис. 3*. Оказалось, что

резкий подъем в инвариантных сечениях для π^+ -мезонов как в π^{-12} C -, так и в π^{-12} - взаимодействиях относится к интервалу очень малых поперечных импульсов / Р _ < 0,015 ГэВ/с/, затем в распределении намечается плато до $P_{\perp} \simeq 0,150 \ \Gamma _{3}B/c.$

§3. А - ЗАВИСИМОСТЬ

В экспериментах по адрон-ядерным взаимодействиям обнаружено, что в выражении для эффективного числа нуклонов ядра А eff /14,15/, принимающих участие во взаимодействии:

A eff =
$$(E \frac{d^3\sigma}{dp^3})_{adpoh-sdpo} / (E \frac{d^3\sigma}{dp^3})_{adpoh-adpoh} = A^{\alpha(P_{\perp})} / 3/$$

		CCHERA	Настоящая	pa00 Ta			[11]	[I2]				[[13]	
Таблица I Значение параметра В выражении $E \frac{d^3 \sigma}{dp^3} = \text{const e}^{-BP}$	χ2	<i>z</i> -	2,50		0,61	0, 58		I,8	I,9	Ι,5	3,2		
		+ 13	3,44		0,13	0,12		Ι,Ι	2,4	I,9	6,8		
	B (ГэЊ/с)-I	で -	6,59 ± 0,06		5,42 <u>+</u> 0,IO	5,34 ± 0,II	5,86 ± 0,15	5,97 ± 0,05	5,92 ± 0,06	5,91 ± 0,07	5,75 ± 0,07	6, 55 ± 0, 07	6,28 ± 0,07
		+ H	5,39 ± 0,05		5,86 ± 0,II	5,74 <u>+</u> 0,I2	5, <i>97</i> <u>+</u> 0,15	5, B6 ± 0, 05	5,80 ± 0,06	5, 72 ± 0, 07	5,65 ± 0,10	6,25 ± 0,07	$6, I4 \pm 0, 07$
	Углы испускения		все угли	B J.C.K.	00 - 120	угли в л. с. к. 30-120	90 ⁰ в с.ц.и.	900 в с.ц.и.	1 = t	1	t = 1	90 ⁰ в с.ц.н.	6 = 1
	ធ័	(L ^{3B})	9 7				28,5	300	500	1000	1500	I2	24
	Реакция		St -12 C				A = Be, II, W	dd				dd	

Рис. 3. Структурные функции для π^{\pm} - мезонов в области малых поперечных импульсов.

степенной показатель $a(P_{\perp})$ растет с увеличением P_{\perp} и может достигать значений, больших чем единица. Мы исследовали структуру поведения величин $a(P_{\perp})$ на примере отобранных нами π^{-12} С-и π^{-} р-взаимодействий при $P_{\pi^{-}} = 40$ ГэВ/с. Полученные значения величин $a(P_{\perp})$ не отличаются существенно от единицы во всем интервале исследованных P_{\perp} /puc. 4/*, причем в соответствующих интервалах P_{\perp} они оказались близкими к значениям, полученным для взаимодействий р-ядро при $E_{p} = 28,5$ ГэВ/11/и ЗОО ГэВ/14/.

Рис. 4. Распределение величин $a(P_{\perp})$ (см. текст, формула /3/).

§4. СТРУКТУРНЫЕ ФУНКЦИИ ДЛЯ ЛИДИРУЮЩИХ ЧАСТИЦ

В качестве лидирующей рассматривалась самая быстрая в данном событии вторичная заряженная частица/10/ Структурные функции для этих частиц в зависимости от P_{\perp} вместе с результатами для π^- р-взаимодействий показаны на *рис.* 5. Распределения для π^+ и π^- -мезонов в π^- 1²C- и π^- р-взаимодействиях по форме подобны друг другу и существенно отличаются от поведения структурных функций, рассмотренных в §2. Такая же картина наблюдается для всех π^{\pm} -мезонов с энергией выше некоторой граничной. В качестве примера на *рис.* 6 показаны структурные функции для π^{\pm} -мезонов с $E \ge 0,3 E_0/E_0$ - энергия налетающего π^- -мезона/.

^{* &}quot;Аномальное" поведение π^+ -мезонов для очень малых P_{\perp} /как и в случае структурных функций, *рис. 3*/ остается пока непонятным.

Рис. 5. Структурные функции для лидирующих частиц.

Распределения структурных функций для лидирующих частиц и для π^{\pm} -мезонов с $E \ge 0,3 E_0$ были аппроксимированы выражением вида

$$E\frac{d^{3}\sigma}{dp^{3}} = \operatorname{const} P_{\perp}^{A_{1}} e^{-A_{2}P_{\perp}}.$$
 /4/

Полученные значения параметров A_1 и A_2 приведены в *табл. 2.* Отметим, что значения параметров для лидирующих частиц и для π^{\pm} -мезонов с $E \ge 0,3 E_0$ в пределах ошибок совпадают.

Параметры A ₁ и A ₂ в выражении $E \frac{d^3 \sigma}{dp^3} = \text{const } P_{\perp}^A e^{-A_2 P_{\perp}}$								
		Лидирубщие ча	ас тяцы	∏[±]- ыезоны с Е ≥0,3 Е _с				
		It +	₮~	\mathcal{I}^{\star}	T-			
-	£1	1,81 ± 0,31	0,95 ± 0,11	1,54 ± 0,51	I,28 <u>+</u> 0,3I			
- £2	(ГэВ/с) ^{-I}	6,03 ± 0,69	4,8I ± 0,33	5,12 ± 1,37	4,28 ± 0,83			
-	<u></u> Ţ ²	0,53	0,17	0,11	c,66			

11

выводы

Основные результаты работы можно сформулировать следующим образом:

1. Структурные функции π^{\pm} -мезонов в зависимости от поперечного импульса имеют экспоненциальный вид в области $P_{\perp} \ge 0,150 \ \Gamma \ni B/c$, причем для π^{\pm} -мезонов, испущенных в л.с.к. вперед, параметры наклона близки друг к другу и мало отличаются от параметров наклона, полученных при анализе взаимодействий pp - и p-ядро в широком диапазоне первичных энергий.

2. Степенные показатели в А-зависимости отношения инвариантных сечений для π^{-12} С- и π^{-p} -взаимодействий близки к единице как для π^{+} -, так и для π^{-} -мезонов в интервале Р $_{\perp} \geq 0,150$ ГэВ/с.

3. Структурные функции для лидирующих частиц и π^{\pm} -мезонов с $E \ge 0,3 E_0$ совпадают друг с другом и по форме подобны соответствующим распределениям для π^- р-взаимодействий при той же энергии налетающего π^- -мезона.

Авторы благодарны лаборантам, принимавшим участие в просмотре снимков с двухметровой пропановой камеры и обработке полученного материала.

ЛИТЕРАТУРА

- 1. Абдурахимов А.У. и др. ОИЯИ, Р1-6277, Дубна, 1972. ЯФ, 1972, 16, с. 989; 1973, 18, с. 1251; 1974, 20, с. 384.
- 2. Ангелов Н. и др. ЯФ, 1976, 24, с. 732.
- 3. Ангелов Н. и др. ЯФ, 1977, 25, с. 1013.
- 4. Ангелов Н. и др. ЯФ, 1977, 25, с. 1009; 1977, 26, с. 811.
- 5. Ангелов Н. и др. ЯФ, 1977, 26, с. 1029; ОИЯИ, P1-10768, Дубна, 1977.
- 6. Ангелов Н. и др. ЯФ, 1975, 22, с. 1026.
- 7. Азимов С.А. и др. ЯФ, 1976, 23, с. 987.
- 8. Ангелов Н. и др. ЯФ, 1977, 25, с. 350; 1977, 25, с. 1201.
- 9. Ангелов Н. и др. ЯФ, 1976, 24, с. 356.
- 10. Аношин А.И. и др. ОИЯИ, 1-10804, Дубна, 1977.
- 11. Becker U. e.a. Phys. Rev. Lett., 1976, 37, p. 1731.
- 12. Banner M.B. e.a. Phys.Lett., 1972, 41B, p. 547.

- 13. Blobel V. e.a. Nucl. Phys., 1974, B69, p. 454.
- 14. Cronin J.V. e.a. Phys.Rev., 1975, D11, p. 3105; In: Proc. of the XVII Intern.Conf. on High Energy Physics, London, July, 1974.
- 15. Boymoud J.P. e.a. Phys.Rev.Lett., 1974, 33, p. 112.

Рукопись поступила в издательский отдел 31 января 1978 года.